Notre Expertise

BRGM– La Villanière (11)

Rapport de tâche 3 : Résultats d'investigation et mise à jour du schéma conceptuel (L2b)

ENVISOL Conseil & Ingénierie

Sites et Sols Pollués

Rapport de tâche 3 : Résultats d'investigation et mise à jour du schéma conceptuel (L2b) BRGM Affaire : A-2001-104 Rapport : R-KC/CCK-2104-1f Date : 11.03.2022

www.envisol.fr

FICHE ADMINISTRATIVE DU DOSSIER

0

Siè 2-4

Siège social	Rapport établi par l'agence
2-4 rue Hector Berlioz	Le siège social
38 110 LA TOUR DU PIN	
Tel : 04 74 83 62 16	
Fax : 04 74 33 97 83	
SIRET : 512 308 321 00052 / APE :7112 B	

Suivi :

Version	Date	Suivi des modifications ou observations
Version a	02/04/2021	Non concernée
Version b	22/06/2021	Modifications suite aux remarques du BRGM
Version c	15/07/2021	Modifications suite aux remarques du BRGM
Version d	18/01/2022	Modification du document suite au CDC HASUD210930
Version e	18/02/2022	Modifications suite remarques ANTEA/BRGM
Vercion f	11/03.2022	Modifications suite remarques ANTEA/BRGM

L'équipe projet :

Ingénieurs	d'études	Superviseure technique	Chef de projet	Superviseur
Charlotte CAPPE- KERBART c.cappekerbart@ envisol.fr 04 74 83 62 16	Kévin COIN k.coin@envisol.fr 04 74 83 62 16	Priscillia SEMAOUNE p.semaoune@envisol.fr 04 74 83 62 16	Stéphane VIRCONDELET s.vircondelet@envisol.fr 04 74 83 62 16	Gael PLASSART g.plassart@envisol.fr 04 74 83 62 16
Chulttelk	B	Supe	Advendelit	

Référentiels encadrant le dossier :

Ce document et ses annexes sont la propriété d'ENVISOL. Il ne peut être utilisé, reproduit ou communiqué même partiellement sans son autorisation.

SOMMAIRE

GL	.OSSA	IRE	. 19
1	СО	NTEXTE ET OBJECTIFS	. 21
2	SO	URCES D'INFORMATIONS	. 22
3	СО	NTEXTE NORMATIF ET REGLEMENTAIRE	. 23
	3.1	CONTEXTE REGLEMENTAIRE ET NORMATIF POUR LE PRELEVEMENT DES SOLS ET SEDIMENTS	. 23
	3.2	CONTEXTE REGLEMENTAIRE ET NORMATIF POUR LE PRELEVEMENT DES EAUX SUPERFICIELLES	. 24
4	DE	SCRIPTION DU SITE D'ETUDE ET DES ZONES D'INTERET	. 24
	4.1	VERSE PRINCIPALE ET VERSES SECONDAIRES DE NARTAU	. 27
	4.2	BATIMENTS DE NARTAU	. 28
	4.3	ZONE DES RESIDUS DE FOUR	. 28
	4.4	PLATEFORME MARTY	. 29
	4.5	VERSE DE RAMELE	. 32
	4.6	VERSE ANNEXE DE RAMELE	. 34
	4.7	LE GRESILLOU	. 34
	4.8	L'HORT ESTIOU	. 36
	4.9	LE RUISSEAU DE VILLANIERE	. 38
	4.10	L'Orbiel	. 38
	4.11	LES EAUX SOUTERRAINES DU RESERVOIR MINIER	. 38
5	SY	NTHESE DU SCHEMA CONCEPTUEL INITIAL	. 39
	5.1	Sources	. 39
	5.2	TRANSFERTS	. 40
	5.3	CIBLES	. 40
	5.4	VOIES D'EXPOSITION DES CIBLES	. 41
6	ST	RATEGIE D'INVESTIGATIONS ET METHODOLOGIE	. 42
	6.1	MILIEUX SOL/ROCHES, PALEO-SEDIMENTS ET SEDIMENTS	. 43
	6.1	.1 Stratégie d'investigations des sols/roches et paléo-sédiments	. 43
	6.1	.2 Stratégie d'investigations des sédiments	. 45
	6.1	.3 Méthodologies d'échantillonnage et d'analyses	. 45
	6.1	.4 Bruit de fond géologique naturel	. 56
	6.2	MILIEU EAU	. 58
	6.2	.1 Stratégie d'investigation	. 58
	6.2	.2 Méthodologie	. 59
	6.4	LIMITES ET INCERTITUDES	. 61
7	PR	OGRAMMES D'INVESTIGATIONS DES MILIEUX	. 63
	7.1	SECURITE ET ENVIRONNEMENT	. 63
	7.2	ALEAS DE CHANTIER	. 63

8

7.3	Ge	OLOCALISATION DES INVESTIGATIONS / RELEVE DE LA POSITION DES INVESTIGATIONS	. 63
7.4	Со	NDITIONNEMENT DES ECHANTILLONS ET TRANSPORT AU LABORATOIRE	. 63
7.5	Inv	ESTIGATIONS DES SOLS	. 64
7.5	5.1	Réalisation des prélèvements	. 64
7.5	5.2	Verses de Nartau	. 64
7.5	5.3	Bâtiments de Nartau	. 67
7.5	5.4	Zone de résidus de four	. 68
7.5	5.5	Plateforme Marty	. 70
7.5	5.6	Verse de Ramèle	. 73
7.5	5.7	Verse annexe de Ramèle	. 76
7.5	5.8	Paléosédiments	. 77
7.6	Inv	ESTIGATIONS DES SEDIMENTS GRESILLOU, DE SES AFFLUENTS, ET DE L'ORBIEL (A220)	. 79
7.6	6.1	Réalisation des prélèvements	. 79
7.6	6.2	Campagne mensuelle	. 79
7.6	6.3	Campagne de reconnaissance	. 82
7.6	6.4	Campagne d'investigations	. 84
7.7	Inv	ESTIGATIONS HYDRO-GEOMORPHOLOGIQUES	. 86
7.7 can	7.1 togra	Investigation géomorphologique, délimitation des sous-bassins versants du Grésillo. aphie des écoulements	ı et 86
7.7	7.2	Suivi des précipitations	. 87
7.7	7.3	Jaugeages et estimation des débits	. 89
7.8	3.1	Prélèvements des eaux superficielles – suivi mensuel	. 91
7.8	3.2	Préleveurs automatiques – suivi d'un évènement pluvieux	. 93
7.9	Inv	ESTIGATIONS HYDROGEOLOGIQUES	. 98
7.9	9.1	Cartographie des éléments hydrogéologiques	. 98
7.9	9.2	Investigations des eaux souterraines – Qualité des eaux (A210)	. 98
CA	ARAC	CTERISATION DES ZONES D'INTERET	. 99
8.1	Ver	RSES DE NARTAU	. 99
8.1	1.1	Géomorphologie	. 99
8.1	1.2	Analyse structurale	100
8.1	1.3	Dynamique des écoulements de surface	101
8.1	1.4	Dynamique des écoulements de sub-surface	103
8.1	1.5	Caractérisation lithologique macroscopique	103
8.1	1.6	Caractérisation chimique et granulochimique	108
8.1	1.7	Minéralogie et distribution des éléments	118
8.1	1.8	Transfert des éléments	124
8.1	1.9	Synthèse de la caractérisation des matériaux des verses de Nartau	126
8.2	Ba	TIMENTS DE NARTAU	127

8.2	2.1	Localisation au sein des sous-bassins versants du Grésillou et écoulements de surface 127	,
8.2	2.2	Caractérisation lithologique macroscopique12	?7
8.2	2.3	Caractérisation chimique 12	29
8.2	2.4	Synthèse de la caractérisation des matériaux des bâtiments de Nartau 13	33
8.3	Zo	NE DE RESIDUS DE FOUR	4
8.3	8.1	Géomorphologie	}4
8.3	8.2	Dynamique des écoulements de surface 13	}4
8.3	3.3	Caractérisation lithologique macroscopique13	35
8.3	8.4	Caractérisation chimique et granulochimique13	37
8.3	8.5	Minéralogie et distribution des éléments 14	14
8.3	8.6	Transfert des éléments 14	19
8.3	8.7	Synthèse de la caractérisation des matériaux de la zone des résidus de four 15	50
8.4	PLA	ATEFORME MARTY	2
8.4	4.1	Géomorphologie	52
8.4	1.2	Dynamique des écoulements de surface 15	52
8.4	1.3	Caractérisation lithologique macroscopique 15	53
8.4	4.4	Caractérisation chimique et granulochimique15	57
8.4	4.5	Minéralogie et distribution des éléments 16	8
8.4	4.6	Transfert des éléments 17	'3
8.4	1.7	Synthèse de la caractérisation des matériaux de la plateforme Marty 17	7
8.5	VE	RSE DE RAMELE	8
8.5	5.1	Géomorphologie	'8
8.5	5.2	Données sur la stabilité 17	'8
8.5	5.3	Dynamique des écoulements de surface 17	'9
8.5	5.4	Dynamique des écoulements souterrains et de sub-surface	30
8.5	5.5	Caractérisation lithologique macroscopique18	31
8.5	5.6	Caractérisation chimique et granulochimique 18	}7
8.5	5.7	Minéralogie et distribution des éléments 19)6
8.5	5.8	Transfert des éléments 20)1
8.5	5.9	Synthèse de la caractérisation des matériaux de la verse Ramèle 20)5
8.6	Vei	RSE ANNEXE DE RAMELE	6
8.6	6.1	Géomorphologie)6
8.6	6.2	Dynamique des écoulements de surface 20)6
8.6	6.3	Caractérisation lithologique macroscopique 20)7
8.6	6.4	Caractérisation chimique 20)8
8.6	6.5	Minéralogie et transfert de l'arsenic 21	3
8.6	6.6	Synthèse de la caractérisation des matériaux de la verse annexe de Ramèle 21	5
8.7	Pai	LEOSEDIMENTS	5

	8.7.1	Caractérisation lithologique macroscopique	215
	8.7.2	Caractérisation chimique et granulochimique	217
	8.7.3	Minéralogie et distribution des éléments	223
	8.7.4	Transfert des éléments	227
	8.7.5	Synthèse de la caractérisation des paléosédiments	228
	8.8 S	EDIMENTS DU GRESILLOU, DE SES AFFLUENTS ET DE L'ORBIEL	228
	8.8.1	Géomorphologie du Grésillou et de ses affluents	228
	8.8.2	Dynamique des écoulements de surface	232
	8.8.3	Caractérisation lithologique macroscopique	234
	8.8.4	Caractérisation chimique et granulochimique	238
	8.8.5	Minéralogie et distribution des éléments	260
	8.8.6	Transfert des éléments	266
	8.8.7	Synthèse de la caractérisation des sédiments	268
	8.9 A 2	NALYSES DES EAUX SUPERFICIELLES DU GRESILLOU, DE L'ORBIEL ET DES EAUX SOUTERF 169	RAINES
	8.9.1	Géomorphologie des bassins versants des stations du Grésillou	269
	8.9.2	Analyse structurale	271
	8.9.3	Dynamique des écoulements de surface	272
	8.9.4	Suivi des précipitations	274
	8.9.5	Jaugeages différentiels	275
	8.9.6	Qualité des eaux	281
	8.9 <i>.</i> 7	Eléments hydrogéologiques et schémas conceptuels	308
9	ESTI	MATIONS SEMI-QUANTITATIVES DES FLUX EN ARSENIC	316
	9.1 E	STIMATION DES FLUX D'ARSENIC DANS LE GRESILLOU	316
	9.1.1	Flux chronique d'As	317
	9.1.2	Flux d'As pluie significative	318
	9.1.3	Flux d'As évènement exceptionnel	321
	9.2 R	REPARTITION DES FLUX PAR SECTEUR D'ETUDE	323
	9.3 F	LUX DE POUSSIERE : ETUDE EVADIES ET INERIS	330
	9.3.1	Mesures des retombées atmosphériques	330
	9.3.2	Mesures de poussières dans l'air ambiant	331
	9.3.3	Etude de risque INERIS (En cours de finalisation)	333
10	HIER	ARCHISATION DES ZONES D'INTERET PRIMAIRES	333
11	ELAE	BORATION DU SCHEMA CONCEPTUEL (SITUATION ACTUELLE)	336
	11.1 S	SOURCES	336
	11.2 V	OIES DE TRANSFERT	338
	11.3 C	CIBLES	339
	11.4 V	OIES D'EXPOSITION RETENUES	339
	11.5 A	APPLICATION A CHAQUE ZONE SOURCE RETENUE	340

LISTE DES FIGURES

Figure 1 : Carte de localisation des zones d'intérêt	. 26
Figure 2. Illustrations des verses de Nartau	. 27
Figure 3. Illustration des anciens emplacements des bâtiments de Nartau et des matériaux de stériles (matériaux remaniés)	e . 28
Figure 4. Illustration de la zone des résidus de four	. 29
Figure 5. Localisation des galeries reliées au puits Marty	. 30
Figure 6. Illustrations des éléments constitutifs de la plateforme Marty	. 31
Figure 7. Illustration de la verse de Ramèle (ancienne fonderie de la Villanière en vert) et de l zone érodée en pied de verse	a . 33
Figure 8. Illustration de la verse annexe de Ramèle	. 34
Figure 9. Illustration des zones de paléo-sédiments	. 35
Figure 10. Localisation de l'Hort Estiou avant la mise en place de la verse (Haut, trait rose) et après (Bas, trait bleu) avec photographie depuis la route (vue vers l'amont)	t . 37
Figure 11. Illustration du ruisseau de Villanière à proximité de sa confluence avec le Grésillo	u . 38
Figure 12. Schématisation de la stratégie d'échantillonnage et d'analyse pour les sols/roches paléo-sédiments et sédiments	s, . 46
Figure 13. Carte de localisation des investigations des verses de Nartau	. 65
Figure 14. Carte de localisation des investigations des bâtiments de Nartau	. 67
Figure 15. Carte de localisation des investigations de la zone des résidus de four (RES4 et RES5 sont confondus car sur le même axe vertical ; la zone d'intérêt a été délimitée conformément à l'etude de MINELIS en 2015)	. 69
Figure 16. Carte de localisation des investigations de la plateforme Marty	. 71
Figure 17. Carte de localisation des investigations de la verse de Ramèle	. 74
Figure 18. Carte de localisation des investigations de la verse annexe de Ramèle	. 76
Figure 19. Illustration précisant la localisation des paléosédiments	. 78
Figure 20 : Localisation des stations de jaugeage et de mesure de la qualité des eaux et des sédiments	. 81
Figure 21. Carte de localisation des investigations des sédiments du Grésillou et ses affluen	ts . 85
Figure 22 : Localisation des stations pluviométriques	. 88
Figure 23. Illustration de l'emplacement du pluviomètre installé par Envisol	. 89
Figure 24 : Plan de localisation des 3 préleveurs automatiques au droit de Mine 1, Mine 1,5 et Mine 2	t . 94
Figure 25. Programme d'échantillonnage des préleveurs automatiques en décembre 2020	. 96
Figure 26. Programme d'échantillonnage des préleveurs automatiques en janvier/février 202	1 . 97
Figure 27 : Cartographie des pentes du bassin versant de la verse principale de Nartau	. 99
Figure 28 : Cartographie des pentes du bassin versant des verses secondaires de Nartau	100

Figure 29 : Mesures structurales aux abords de la verse de Nartau, des verses secondaires et des bâtiments de Nartau
Figure 30 : Cartographie des écoulements de surface sur le bassin versant de la verse de Nartau
Figure 31 : Cartographie des écoulements de surface sur le bassin versant des verses secondaires de Nartau
Figure 32. Photographie d'échantillons représentatifs du corps de verse de Nartau ; en haut : ferricrête sur les verse principale et secondaire ; au milieu : échantillons représentatifs à l'affleurement ; en bas : échantillons représentatifs tamisés
Figure 33. Photographies des matériaux de pied de verse de Nartau ; en haut : trois zones principalement investiguées ; au milieu : échantillons tamisés représentatifs de chaque zone ; en bas : blocs des pieds de verses
Figure 34. Photographie d'échantillons des matériaux du haut des verses de Nartau 107
Figure 35. Spectre multi élémentaire des concentration normalisées à l'ensemble du site d'étude pour les matériaux des verses de Nartau (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)
Figure 36. Cartographie des concentrations en arsenic au droit des verses de Nartau 112
Figure 37. Contribution chimique des fractions fines et grossière des matériaux de Nartau 114
Figure 38. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques pour des échantillons aux pieds des verses de Nartau ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction
Figure 39. Proportions minéralogiques des matériaux de Nartau 121
Figure 40 : Cartographie des pentes et écoulements de surface aux abords des bâtiments de Nartau
Figure 41. Photographie d'échantillons représentatifs des bâtiments de Nartau. En bas à gauche : blocs rocheux oxydés et calcinés ; en bas à droite : blocs de minerai friable à scorodite (blanc/vert)
Figure 42. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux des bâtiments de Nartau (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)
Figure 43. Cartographie des concentrations en arsenic au droit des bâtiments de Nartau 132
Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four
Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four
Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four
Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four 134 Figure 45 : Cartographie des écoulements de surface sur le bassin versant de la zone de résidus de four 135 Figure 46. Photographie d'échantillons représentatifs des matériaux de la zone de résidus de four 136 Figure 47. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la zone des résidus de four (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt) 138
Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four 134 Figure 45 : Cartographie des écoulements de surface sur le bassin versant de la zone de résidus de four 135 Figure 46. Photographie d'échantillons représentatifs des matériaux de la zone de résidus de four 136 Figure 47. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la zone des résidus de four (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt) 138 Figure 48. Cartographie des concentrations en arsenic au droit de la zone des résidus de four 138
Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four 134 Figure 45 : Cartographie des écoulements de surface sur le bassin versant de la zone de résidus de four 135 Figure 46. Photographie d'échantillons représentatifs des matériaux de la zone de résidus de four 136 Figure 47. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la zone des résidus de four (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt) 138 Figure 48. Cartographie des concentrations en arsenic au droit de la zone des résidus de four 140
Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four 134 Figure 45 : Cartographie des écoulements de surface sur le bassin versant de la zone de résidus de four 135 Figure 46. Photographie d'échantillons représentatifs des matériaux de la zone de résidus de four 136 Figure 47. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la zone des résidus de four (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt) 138 Figure 48. Cartographie des concentrations en arsenic au droit de la zone des résidus de four 140 Figure 49. Contribution chimique des fractions fines et grossière des matériaux de la zone de résidus de la zone de 141

granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction. 143

Figure 51. Proportions minéralogiques des matériaux de la zone des résidus de four 147
Figure 52 : Cartographie des pentes du bassin versant de la Plateforme Marty 152
Figure 53 : Cartographie des écoulements de surface sur le bassin versant de la Plateforme Marty
Figure 54. Photographie d'échantillons représentatifs des matériaux partiellement recouverts au droit de la plateforme Marty. De gauche à droite, les matériaux mis à nu par la crue de 2020, les matériaux mis à nu par la crue de 2018 et les matériaux investigués à 50 cm de profondeur, sous les matériaux de recouvrement
Figure 55. Photographies des tas matériaux de la plateforme Marty ; en haut : illustration des tas ; au milieu : échantillons tamisés représentatifs de chaque zone ; en bas : blocs minéralisés (Abréviations : Qtz : quartz, Py : pyrite, Asp : arsénopyrite, Sc : scorodite) 156
Figure 56. Photographie d'échantillons des matériaux de couverture de la plateforme Marty 157
Figure 57. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la plateforme Marty (PM ; la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)
Figure 58. Cartographie des concentrations en arsenic au droit de la plateforme Marty (MAR13 et MAR12 sont des mesures sous la couverture de 50 cm)
Figure 59. Contribution chimique des fractions fines et grossière des matériaux de la plateforme Marty
Figure 60. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction 167
Figure 61. Proportions minéralogiques des matériaux de la plateforme Marty
Figure 62 : Cartographie des pentes du bassin versant de la verse de Ramèle
Figure 63. Effondrement observé au droit de la galerie d'aérage Ramèle (Janvier 2020) 179
Figure 64 : Cartographie des écoulements de surface sur le bassin versant de la verse de Ramèle
Figure 65. Photographie d'échantillons représentatifs de la zone d'impact à proximité de l'ancienne cheminée de la fonderie de la verse de Ramèle
Figure 66. Photographies des matériaux situés dans les zones de ravinement au droit de la zone d'impact en corps de verse de Ramèle
Figure 67. Photographie d'échantillons des matériaux représentatif du bas de la verse Ramèle
Figure 68. Photographies des matériaux situés au pied de la verse Ramèle érodé par le Grésillou
Figure 69. Photographies illustrant les blocs des talus de la verse Ramèle
Figure 70. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la verse de Ramèle (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)
Figure 71. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux contenant de l'anhydride arsénieux de la verse de Ramèle (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt) 189
Figure 72. Cartographie des concentrations en arsenic au droit de la verse de Ramèle 192
Figure 73. Cartographie des concentrations en arsenic au pied de verse érodé de Ramèle 193

Figure 74. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction 195
Figure 75. Proportions minéralogiques des matériaux de la verse Ramèle
Figure 76 : Cartographie des pentes du bassin versant de la verse annexe de Ramèle
<i>Figure 77 : Cartographie des écoulements de surface sur le bassin versant de la verse annexe de Ramèle</i>
Figure 78. Photographie d'échantillons représentatifs des matériaux de la verse annexe de Ramèle
Figure 79. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la verse annexe de Ramèle (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)
Figure 80. Cartographie des concentrations en arsenic au droit de la verse annexe de Ramèle
Figure 81. Diagramme binaire de concentrations entre l'arsenic et le fer, ls soufre, le potassium et le calcium
Figure 82. Photographie d'échantillons représentatifs des paléosédiments en zone d'inondation
Figure 83. Photographie d'échantillons représentatifs des paléosédiments en banc dans le Grésillou
Figure 84. Spectre multi élémentaire des concentrations des paléosédiments normalisées à l'ensemble du site d'étude pour les paléosédiments (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)
Figure 85. Cartographie des concentrations en arsenic dans les paléosédiments en zone d'inondation
Figure 86. Cartographie des concentrations en arsenic dans les paléosédiments en banc dans le Grésillou
Figure 87. Proportions minéralogiques des paléosédiments
Figure 88 : Cartographie des pentes du bassin versant du ruisseau du Grésillou
Figure 89. Profil topographique longitudinal du Grésillou de sa source à sa confluence avec l'Orbiel
Figure 90 : Cartographie des pentes du bassin versant du ruisseau de l'Hort Estiou
Figure 91 : Cartographie des pentes du bassin versant du ruisseau de la Villanière (MCO : Mine à Ciel Ouvert)
Figure 92 : Cartographie des écoulements de surface sur le bassin versant du ruisseau du Grésillou
Figure 93 : Cartographie des écoulements de surface sur le bassin versant de l'Hort Estiou. 233
Figure 94 : Cartographie des écoulements de surface sur le bassin versant du ruisseau de la Villanière
Figure 95. Photographies d'échantillons de sédiments du Grésillou : à gauche GRE1, au centre GRE22 et à droite GRE35, situés respectivement en amont de Nartau, en aval des zones d'intérêt et avant la confluence avec l'Orbiel
Figure 96. Photographies de blocs de scories et de minerai retrouvé dans le Grésillou
Figure 97. Photographie d'échantillons de sédiments de l'Hort Estiou, de la Villanière et de l'Orbiel

Figure 98. Spectre multi élémentaire des moyennes de concentrations normalisées à GRE1, pour les sédiments du Grésillou de l'Hort Estiou et de la Villanière (données pXRF)
Figure 99. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les sédiments du Grésillou (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)
Figure 100. Spectre multi élémentaire de moyennes spatiales de concentrations normalisées à GRE1 pour les sédiments du Grésillou (données pXRF)
Figure 101. Cartographie des concentrations en arsenic dans les sédiments le long du Grésillou
Figure 102. Spectre multi élémentaire des moyennes temporelles (campagnes de janvier à juillet 2020) de concentrations normalisées à GRE1 pour les sédiments du Grésillou (données laboratoire)
Figure 103. Concentrations en arsenic des sédiments le long du Grésillou mesurées lors des campagnes mensuelles de reconnaissance et d'investigation (les teneurs pour la fraction >2 mm sont indicatives)
Figure 104. Cartographie des concentrations en As sur les sédiments du Grésillou (ICF, 2007)
Figure 105. Concentrations en arsenic des sédiments le long du Grésillou mesurées lors de la campagne de prélèvements réalisée par le BRGM en 2021
Figure 106. Concentrations en arsenic des sédiments mesurées au cours des campagnes mensuelles de janvier à juillet
Figure 107. Spectre multi élémentaire des moyennes (spatiale et temporelle, de janvier à juillet 2020) de concentrations normalisées à Mine 1 pour les sédiments du Grésillou de l'Orbiel (données laboratoire)
Figure 108. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction (1/2).
Figure 109. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction (2/2).
Figure 110. Proportions minéralogiques des sédiments du Grésillou, de l'Hort Estiou et de la Villanière
Figure 111 : Cartographie des pentes du bassin versant du Grésillou et localisation des stations de suivi des eaux superficielles
Figure 112 : Localisation des mesures structurales sur le site d'étude
Figure 113 : Cartographie des écoulements de surface du bassin versant du Grésillou (partie aval) et localisation des stations de suivi des eaux superficielles
Figure 114 : Pluviométrie quotidienne mesurée au niveau de la station de l'Artus (Minélis en bleu) et au niveau de la station du Grésillou (Envisol en orange) en 2020 et début 2021 275
Figure 115 : Evolution des températures des stations investiguées en 2020 et début 2021 (campagnes mensuelles et de prélèvement automatique)
Figure 116 : Evolution du pH des stations investiguées en 2020 et début 2021 (campagnes mensuelles et de prélèvement automatique)
Figure 117 : Evolution de la conductivité (A) et valeurs de conductivités moyennes (B) des stations investiguées en 2020 et début 2021 (campagnes mensuelles et de prélèvement automatique)

Figure 118 : Evolution du potentiel Redox des stations investiguées en 2020 et début 2021 (campagnes mensuelles et de prélèvement automatique)
Figure 119 : Evolution de la concentration et du pourcentage d'oxygène dissous des stations investiguées en 2020 et début 2021 (campagnes mensuelles et de prélèvement automatique) 285
Figure 120 : Diagramme Eh-pH des eaux du Grésillou en 2020 (d'après Petrusevski et al, 2007)
Figure 121 : Evolution des concentrations en arsenic total et dissous à la suite de l'évènement pluvieux du 10 et 11 décembre 2020 (stations Mine 1, Mine 1,5 et Mine 2)
Figure 122 : Evolution des concentrations en arsenic total et dissous lors de l'évènement pluvieux du 29 janvier et 02 février 2021 (stations Mine 1, Mine 1,5 et Mine 2)
Figure 123. Concentrations moyennes en arsenic total dans les eaux superficielles du Grésillou
Figure 124 : (A) Concentrations en arsenic dissous et (B) concentrations moyennes dans les eaux superficielles du Grésillou, de l'Orbiel et au niveau de la Cheminée Panneau Sud 293
Figure 125 : (A) Concentrations en sulfates et (B) concentrations moyennes dans les eaux superficielles du Grésillou, de l'Orbiel et au niveau de la Cheminée Panneau Sud
Figure 126 : Diagrammes de Schoeller pour l'année 2020 permettant une comparaison des concentrations par espèces chimiques pour les eaux échantillonnées du Grésillou, de l'Orbiel et au niveau de la Cheminée Panneau Sud
Figure 127 : Diagrammes de Piper pour l'année 2020 montrant les faciès échantillonnés pour les eaux échantillonnées du Grésillou, de l'Orbiel et au niveau de la Cheminée Panneau Sud301
Figure 128. Débit du Grésillou en Mine 1 et 2 mesuré par Minélis de janvier 2013 à 2020 303
Figure 129 : Moyennes mensuelles des débits et concentrations en arsenic total au droit des stations Mine 1, Mine 1,5, Mine 2 sur la période 2010-2019 (données Minélis) et comparaison avec les données mensuelles recueillies en 2020 par Envisol et Minélis au droit de ces mêmes stations. Les écarts-types sont également précisées
Figure 130 : Moyennes mensuelles des débits et concentrations en arsenic dissous au droit des stations Mine 1, Mine 1,5, Mine 2 sur la période 2010-2019 (données Minélis) et comparaison avec les données mensuelles recueillies en 2020 par Envisol et Minélis au droit de ces mêmes stations. Les écarts-types sont également précisées
Figure 131 : Moyennes mensuelles des pH au droit des stations Mine 1, Mine 1,5, Mine 2 sur la période 2010-2019 (données Minélis) et comparaison avec les données mensuelles recueillies en 2020 par Envisol au droit de ces mêmes stations
Figure 132 : Moyennes mensuelles des valeurs de conductivité au droit des stations Mine 1, Mine 1,5, Mine 2 sur la période 2010-2019 (données Minélis) et comparaison avec les données mensuelles recueillies en 2020 par Envisol au droit de ces mêmes stations
Figure 133 : Moyennes mensuelles des potentiels redox au droit des stations Mine 1, Mine 1,5, Mine 2 sur la période 2010-2019 (données Minélis) et comparaison avec les données mensuelles recueillies en 2020 par Envisol au droit de ces mêmes stations
Figure 134 : Moyennes mensuelles de la concentration en sulfates au droit des stations Mine 1, Mine 1,5, Mine 2 sur la période 2010-2019 (données Minélis) et comparaison avec les données mensuelles recueillies en 2020 par Envisol au droit de ces mêmes stations
Figure 135. Modèle des échanges entre la mine et son environnement (Minélis, 2006)
Figure 136. Coupe géologique simplifiée le long du Grésillou et localisation des observations hydrogéologiques
Figure 137. Schéma hydrogéologique verse de Nartau 313
Figure 138. Schéma hydrogéologique verse de Ramèle 313

Figure 139. Localisation des pertes et résurgences observées au cours des investigations de terrain et cartographie hydrogéologique	15
Figure 140. Quantification des flux d'As en chronique en kg/an	18
Figure 141. Quantification des flux d'As en pluies significatives en kg/an	20
Figure 142. Qualification des flux d'As en évènement exceptionnel	23
Figure 143. Schéma explicatif de l'estimation du potentiel de relargage des zones sources 32	24
Figure 144. Surfaces considérées comme homogènes pour le calcul du potentiel de relargage	27
Figure 145. Localisation des sites de mesure de la qualité de l'air par EVADIES (source : Rapport 7020 v3.0 EVADIES)	31
Figure 146. Localisation des sites de mesure de la qualité de l'air par EVADIES (source : Rapport 0321 EVADIES)	32
Figure 147. Schémas conceptuels de la verse de Nartau (ENVISOL)	41
Figure 148. Schéma conceptuel de la zone de résidus de four (ENVISOL)	42
Figure 149. Schéma conceptuel de la Plateforme Marty (ENVISOL)	43
Figure 150. Schéma conceptuel de la verse de Ramèle (ENVISOL)	44

LISTE DES TABLEAUX

Tableau 1. Listing des 7 zones sources potentielles
Tableau 2. Méthodes d'analyses chimiques et éléments dosés
Tableau 3. Modalités des extractions séquentielles 51
Tableau 4. Paramètres et méthodes d'analyse des packs ISDI (étendus ou non)
Tableau 5. Zones d'intérêt et incertitudes associées aux investigations
Tableau 6. Synthèse des investigations et du programme analytique des verses de Nartau 66
Tableau 7. Synthèse des investigations et du programme analytique des bâtiments de Nartau68
Tableau 8. Synthèse des investigations et programme analytique de la zone des résidus defour69
Tableau 9. Synthèse des investigations et programme analytique de la plateforme Marty 72
Tableau 10. Synthèse des investigations de la verse de Ramèle
Tableau 11. Synthèse des investigations de la verse annexe de Ramèle
Tableau 12. Synthèse des investigations des paléo-sédiments 79
Tableau 13. Synthèse des prélèvements de sédiments des sédiments au cours des campagnesmensuelles80
Tableau 14. Synthèse des prélèvement et analyses des sédiments au cours de la campagne dereconnaissance83
Tableau 15. Synthèse des prélèvement et analyses des sédiments au cours de la campagne d'investigation
Tableau 16 : Stations pluviométriques d'intérêt pour le suivi des précipitations
Tableau 17 : Mesures de jaugeages réalisées le long du Grésillou au cours des campagnes de suivi mensuel (2020)
Tableau 18 : Prélèvements d'eau superficielle réalisés lors des campagnes mensuelles de 2020
Tableau 19. Caractéristiques des programmes de prélèvement automatiques des eaux superficielles du Grésillou (Mine 1, Mine 1,5, Mine 2)95
Tableau 20 : Investigations de la qualité des eaux réalisées sur le Puits Réservoir minier (Panneau sud) en 2020
Tableau 21. Caractéristiques physiques et lithologiques des échantillons du corps de verse de Nartau
Tableau 22. Caractéristiques physiques et lithologiques des échantillons des pieds de verses de Nartau
Tableau 23. Caractéristiques physiques et lithologiques des échantillons du haut des verses de Nartau
Tableau 24. Chimie des matériaux des verses de Nartau (résultats pXRF corrigés en mg/kg) 110
Tableau 25. Chimie des matériaux des verses de Nartau (résultats du laboratoire après minéralisation à l'eau régale)
Tableau 26. Granulochimie des échantillons aux pieds des verses de Nartau
Tableau 27. Minéralogie des matériaux de Nartau et bilan de concentration en arsenic, fer et soufre
Tableau 28. Résultats d'extractions séquentielles en mg/kg pour les matériaux de Nartau 123

Tableau 29. Résultats d'extractions séquentielles en % extrait pour les matériaux de Nartau 123
Tableau 30. Proportion des éléments lixiviables (%) issues des essais de lixiviation de packISDI
Tableau 31. Synthèse des paramètres et résultats de lixiviation des échantillons de Nartau 125
Tableau 32. Caractéristiques physiques, chimiques, et lithologiques des matériaux des versesde Nartau126
Tableau 33. Caractéristiques physiques et lithologiques des échantillons des bâtiments de Nartau
Tableau 34. Chimie des matériaux des bâtiments de Nartau (résultats pXRF corrigés en mg/kg)
Tableau 35. Caractéristiques physiques, chimiques, et lithologiques des matériaux des bâtiments de Nartau
Tableau 36. Caractéristiques physiques et lithologiques des échantillons de la zone de résidusde four
Tableau 37. Chimie des matériaux de la zone des résidus de four (résultats pXRF corrigés enmg/kg)
Tableau 38. Chimie des matériaux de la zone des résidus de four (résultats du laboratoire aprèsminéralisation à l'eau régale)139
Tableau 39. Granulochimie des échantillons de la zone des résidus de four
Tableau 40. Minéralogie des matériaux de la zone des résidus de four et bilan de concentrationen arsenic, fer et soufre145
Tableau 41. Résultats d'extractions séquentielles pour les matériaux de la zone des résidus de four
Tableau 42. Proportion des éléments lixiviables (%) issus des essais de lixiviation de pack ISDI
Tableau 43. Synthèse des paramètres et résultats de lixiviation des échantillons de résidus de four
Tableau 44. Caractéristiques physiques, chimiques, et lithologiques des matériaux de la zone des résidus de four
Tableau 45. Caractéristiques physiques et lithologiques des échantillons de matériaux partiellement recouverts au droit de la plateforme Marty (muret mis à nu par la crue de mai 2020 et sondages)
Tableau 46. Caractéristiques physiques et lithologiques des échantillons des tas de matériauxau droit de la plateforme Marty155
Tableau 47. Caractéristiques physiques et lithologiques des échantillons des matériaux derecouvrement au droit de la plateforme Marty157
Tableau 48. Chimie des matériaux de la plateforme Marty (résultats pXRF corrigés en mg/kg)
Tableau 49. Chimie des matériaux de la plateforme Marty (résultats du laboratoire après minéralisation à l'eau régale)
Tableau 50. Granulochimie des matériaux du muret mis à nu au droit de la plateforme Marty 167
Tableau 51. Minéralogie des matériaux de la plateforme Marty et bilan de concentration en arsenic, fer et soufre
Tableau 52. Résultats d'extractions séquentielles en mg/kg pour les matériaux de la plateforme Marty 173

Tableau 53. Résultats d'extractions séquentielles en % extrait pour les matériaux de laplateforme Marty
Tableau 54. Proportion des éléments lixiviables (%) issues des essais de lixiviation de packISDI
Tableau 55. Synthèse des paramètres et résultats de lixiviation des échantillons de la plateforme Marty
Tableau 56. Caractéristiques physiques, chimiques, et lithologiques des matériaux de la plateforme Marty
Tableau 57. Caractéristiques physiques et lithologiques des échantillons de la zone d'impact à proximité de l'ancienne cheminée de la fonderie de la verse de Ramèle 181
Tableau 58. Caractéristiques physiques et lithologiques des échantillons de la zone d'impacten corps de verse de Ramèle
Tableau 59. Caractéristiques physiques et lithologiques des échantillons du bas de la verse de Ramèle
Tableau 60. Caractéristiques physiques et lithologiques des échantillons du pied de verse Ramèle érodés par le Grésillou
Tableau 61. Chimie des matériaux de la verse de Ramèle (résultats pXRF corrigés en mg/kg)
Tableau 62. Chimie des matériaux de la verse de Ramèle (résultats du laboratoire après minéralisation à l'eau régale)
Tableau 63. Granulochimie des matériaux de pied de verse Ramèle érodé par le Grésillou 195
Tableau 64. Minéralogie des matériaux de la verse Ramèle et bilan de concentration en arsenic, fer et soufre
Tableau 65. Résultats d'extractions séquentielles en mg/kg pour les matériaux de la verse de Ramèle
Tableau 66. Résultats d'extractions séquentielles en % extrait pour les matériaux de la verse de Ramèle
Tableau 67. Proportion des éléments lixiviables (%) issues des essais de lixiviation de packISDI
Tableau 68. Synthèse des paramètres et résultats de lixiviation des échantillons de la verse deRamèle204
Tableau 69. Caractéristiques physiques, chimiques, et lithologiques des matériaux de la verseRamèle205
Tableau 70. Caractéristiques physiques et lithologiques des échantillons du corps de la verse annexe de Ramèle
Tableau 71. Chimie des matériaux de la verse annexe de Ramèle (résultats pXRF corrigés en mg/kg)
Tableau 72. Chimie des matériaux de la verse annexe de Ramèle (résultats du laboratoire après minéralisation à l'eau régale) 212
Tableau 73. Caractéristiques physiques, chimiques, et lithologiques des matériaux de la verse annexe Ramèle 215
Tableau 74. Caractéristiques physiques et lithologiques des échantillons de paléosédiments en zone d'inondation du Grésillou
Tableau 75. Caractéristiques physiques et lithologiques des échantillons de paléosédiments en banc dans le Grésillou 217
Tableau 76. Chimie des paléosédiments (résultats pXRF corrigés en mg/kg)

Tableau 77. Chimie des paléosédiments (résultats du laboratoire après minéralisation à l'eau régale)
Tableau 78. Minéralogie des paléosédiments et bilan de concentration en arsenic, fer et soufre
Tableau 79. Résultats d'extractions séquentielles en mg/kg pour les matériaux de la verse de Ramèle
Tableau 80. Résultats d'extractions séquentielles en % extrait pour les matériaux de la verse de Ramèle
Tableau 81. Caractéristiques physiques, chimiques, et lithologiques des paléosédiments 228
Tableau 82. Caractéristiques physiques et lithologiques des sédiments du Grésillou,
Tableau 83. Caractéristiques physiques et lithologiques des sédiments de l'Hort Estiou et de laVillanière
Tableau 84. Chimie des sédiments du Grésillou, de l'Hort Estiou et de la Villanière (résultats pXRF corrigés en mg/kg)
Tableau 85. Chimie des sédiments du Grésillou, de l'Hort Estiou et de la Villanière (résultats du laboratoire après minéralisation à l'eau régale)
Tableau 86. Concentrations moyennes des sédiments du Grésillou et de l'Orbiel acquises lors des campagnes mensuelles de janvier à juillet 2020.
Tableau 87. Rapports de concentration en arsenic (pXRF) pour les fractions 0-1 mm, 0-2 mm et> 2 mm des sédiments du Grésillou
Tableau 88. Granulochimie des sédiments du Grésillou, de l'Hort Estiou et de la Villanière 258
Tableau 89. Minéralogie des sédiments du Grésillou, de l'Hort Estiou et de la Villanière 262
Tableau 90. Résultats d'extractions séquentielles en g/kg pour les sédiments du Grésillou, de l'Hort Estiou et de la Villanière
Tableau 91. Résultats d'extractions séquentielles en % extrait pour les sédiments du Grésillou,de l'Hort Estiou et de la Villanière
Tableau 92. Caractéristiques physiques, chimiques, et lithologiques des sédiments
Tableau 93 : Pluviométrie mensuelle en mm pour l'année 2020 et début d'année 2021
Tableau 94 : Débits calculés en m3/s à la suite des campagnes de jaugeages mensuelles le long du Grésillou en 2020 (Logiciel de calcul DEPJAU)
Tableau 95 : Débits calculés à la suite des campagnes de jaugeages réalisées lors des évènements pluvieux significatifs
Tableau 96 : Résultats des mesures de matières en suspension en mg/l dans les eaux de surface – LQ = 2 mg/l
Tableau 97 : Résultats d'analyses des eaux de surface lors de la crue de mai 2020
Tableau 98. Evaluation qualitative du flux particulaire des zones sources primaires et secondaires
Tableau 99. Calcul du potentiel de relargage (mg/kg*m²) par zone source
Tableau 100. Critères de hiérarchisation des zones d'intérêt primaires
Tableau 101. Tableau de scoring pour la hiérarchisation des zones d'intérêt
Tableau 102. Listing des 7 zones sources potentielles

LISTE DES ANNEXES

Annexe 1. Rapport des protocoles d'investigations d'ENVISOL	. 23
Annexe 2. Modalités d'utilisation du spectromètre portable de fluorescence X (pXRF)	. 47
Annexe 3. Bordereaux d'analyses laboratoire	. 56
Annexe 4. Cartographie du Grésillou et de ses sédiments2	229

GLOSSAIRE

Bassin versant : un espace drainé par un cours d'eau et ses affluents sur un ensemble de versants. Toutes les eaux dans cet espace s'écoulent et convergent vers un même point de sortie appelé exutoire.

Bilan Coûts-Avantages : le BCA constitue l'un des éléments du plan de gestion et se focalise sur un argumentaire précis de différents scénarios. Il est à adapter en fonction des connaissances recueillies sur le site d'étude et mis à jour lors de l'établissement du plan de conception des travaux.

Cible : personne potentiellement exposée à un danger.

COD/MES : Carbone organique dissous/matière en suspension.

Danger : capacité intrinsèque d'une substance susceptible de causer un dommage pour la santé humaine et/ou pour l'environnement.

Déchets d'exploitations / déchets miniers : la notion de déchets miniers regroupe tous les types de déchets directement ou indirectement issus de l'exploitation minière, dans la mine elle-même (y compris les poussières), ou hors de celle-ci. Ces déchets sont principalement : les stériles, les résidus miniers et les déchets produits pour l'exploitation.

DRX : diffractométrie de rayons X.

Eaux de percolation : ensemble des eaux transitant dans le sol depuis la surface vers les nappes d'eaux souterraines. Les processus de percolation de l'écoulement de l'eau à travers un substrat solide sont la filtration et la lixiviation.

Gisement : un gisement désigne la concentration d'une ressource naturelle (métaux, hydrocarbures, eau...), dont l'exploitation est économiquement rentable. Sa délimitation spatiale est dépendante des résultats des travaux d'exploration et de pré-exploitation.

ICP-MS/AES : Inductively Coupled Plasma – Mass Spectrometry / Atomic Emission Spectrometry.

Mesure de gestion : disposition visant à éliminer les pollutions sur site ou à limiter voire désactiver leur diffusion dans le milieu environnant.

Milieu de transfert : milieu intermédiaire, siège d'un déplacement d'une substance entre un milieu source et un milieu d'exposition (ou milieu source secondaire).

Milieu d'exposition : milieu de contact entre une cible et un danger.

Milieu source primaire : milieu pollué en concentration significative diffusant sa pollution dans l'environnement par l'intermédiaire d'une voie de transfert.

Milieu source secondaire : milieu pollué en concentration significative, généré à partir du transfert de pollution d'une source primaire, diffusant sa pollution dans l'environnement par l'intermédiaire d'une voie de transfert.

Minerai altéré : le minerai du gisement de Salsigne est principalement composé de sulfures arséniés et/ou aurifères. Le minerai est qualifié d'altéré lorsque les sulfures ont été transformés, par alération supergène (i.e. oxydation), en minéraux secondaires tels que des oxy/hrodroxydes de fer qui incluent notament la scorodite.

Paléosédiments : sédiments déposés au cours d'anciennes crues le long du cours d'eau.

Pollution (métallique) : introduction directe ou indirecte de substances (ici éléments traces métalliques) dans l'environnement par l'activité humaine pouvant nuire à la santé humaine et/ou à l'environnement.

Résidus miniers : Les résidus ou produits artificiels (généralement d'une granulométrie homogène) résultant du traitement (enrichissement) physique, chimique ou biologique d'un minerai (matériaux sélectionnés au-dessus de la teneur de coupure).

Risque : probabilité de survenue d'un danger.

Scoring : traduction anglaise du mot notation

Scénario de gestion : combinaison de mesures de gestion (techniques de dépollution, restrictions d'usage, dispositions constructives et/ou monitoring) permettant la maîtrise des sources de pollution.

Site d'étude : le site d'étude se situe dans la vallée du Grésillou et plus précisément entre l'amont immédiat des verses de Nartau jusqu'à la confluence de ce ruisseau avec l'Orbiel.

Source primaire de pollution : Objet d'étude présentant un milieu source primaire

Source secondaire de pollution : Objet d'étude présentant un milieu source secondaire

Stériles miniers : Les stériles d'exploitation ou matériaux naturels (souvent rocheux et à granulométrie très hétérogène) dont la teneur en élément(s) valorisable(s) est en dessous de leur teneur de coupure. On distinguera :

- les stériles francs (de découverture, de traçage) présentant peu de différence avec les sols naturels
- Les stériles de sélectivité plus ou moins minéralisés et inférieurs à la teneur de coupure.

Technique de dépollution : procédé, physique, chimique ou biologique permettant la suppression, l'abattement ou la stabilisation pérenne d'une pollution.

Technique de dépollution « novatrice » : technique de dépollution pour laquelle il existe à l'heure actuelle peu (voire pas) de retour d'expérience en France.

Voie de transfert : vecteur d'origine physico-chimique permettant le déplacement d'un polluant.

Zones d'intérêt : zones sources primaires ou secondaires présentant des caractéristiques historique, géographique et structurelles spécifiques, siège d'une pollution.

Zone des résidus de four nommée ancienne zone de résidus de four : cette zone fait référence à une zone où des résidus de four avaient été retrouvés en 2015 et ont été déplacé sur la plateforme Marty. En date de la présente étude, les résidus de four n'y sont plus présents.

Zone source : zone présentant des caractéristiques historique, géographique, physique, structurelles, chimiques spécifiques, siège d'une pollution.

BRGM – La Villanière (11) Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

1 CONTEXTE ET OBJECTIFS

Les anciens sites miniers et industriels de la vallée de l'Orbiel ont historiquement été très actifs dans le contexte minier français. La mine de Salsigne a été la plus importante mine d'or d'Europe occidentale et la dernière en France métropolitaine. Divers exploitants se sont succédés jusqu'à l'arrêt définitif de l'exploitation minière en 2004.

Le dernier exploitant, la société MOS (Mine d'Or de Salsigne), a réalisé les travaux de fermeture et mise en sécurité de la mine de Salsigne et des installations connexes. En parallèle, l'Etat a confié à l'ADEME, en 1999, plusieurs travaux de réhabilitation sur une partie du site de la Combe du Saut, siège des principales installations de traitement du minerai associées à la mine de Salsigne.

Par la suite, une gestion des sites et une surveillance environnementale ont été mises en place à partir de 2006. Elles ont été confiées au Département de Prévention et Sécurité Minière (DPSM) du BRGM par la convention Etat – BRGM du 4 mai 2006. Cette gestion porte sur toutes les installations héritées de la société MOS, les terrains issus des réhabilitations menées par l'ADEME, mais également sur un certain nombre de sites anciens acquis par l'Etat dès 1992, date de création de la société MOS. A partir de cette date, la responsabilité de la société MOS ne s'appliquait donc pas sur ces sites anciens, appelés maintenant « sites exclus » ou « sites satellites ».

Les sites de Nartau et Ramèle, objets de la présente étude, font partie de ces sites dits « exclus » ou « satellites ». Ils sont respectivement partiellement et intégralement constitués de verses, c'est-à-dire de matériaux historiquement dispersés sur la topographie originelle. Les précédentes études sur les éléments majeurs et traces montrent que l'arsenic (As), de par sa toxicité et sa présence en quantité, est le traceur principal des activités anciennes et la problématique majeure de cette étude.

Dans le cadre de sa mission de maîtrise d'ouvrage déléguée, le BRGM/DPSM a mandaté ENVISOL pour la réalisation d'une étude technico-économique sur les possibilités de gestion de ces deux sites satellites au regard des usages identifiés et de leur impact sur ces derniers.

D'autres sites « exclus », hors cadre de la présente étude, sont présents sur le secteur de Salsigne : Malabau, Peyre-brune, arséniates de chaux et verse de l'atelier.

Cette étude technico-économique se divise en quatre tâches :

- Tâche 1 : Appropriation du site et de la problématique, études historiques et documentaires, étude de vulnérabilité et établissement du schéma conceptuel initial ;
- Tâche 2 : Réalisation d'un programme d'investigations ;
- Tâche 3 : Synthèse des données et actualisation du schéma conceptuel ;
- Tâche 4 : Réalisation d'une étude technico-économique.

Ce rapport s'attache à la tâche 3 dont les objectifs sont les suivants :

- identifier et préciser les zones d'intérêt ;
- identifier les zones d'ombre et les incertitudes liées aux investigations déjà réalisées ;
- présenter la stratégie d'investigations complémentaires ;
- présenter le programme d'investigations ;
- présenter et interpréter les résultats des investigations ;
- estimer les flux d'arsenic vers l'environnement ;
- hiérarchiser les sources identifiées ;
- mettre à jour le schéma conceptuel.

2 SOURCES D'INFORMATIONS

Les sources d'information liées au présent rapport sont les suivantes :

- rapport ANTEA : Ennoyage de l'exploitation minière de Salsigne (Aude), prévision de la remontée des eaux et de la qualité des exhaure résiduelles, recherche et mesures compensatoires - rapport ANTEA – A31011B (septembre 2003) ;
- rapport BRGM : BRGM/RP-70767-FR, Etablissement du fond pédo-géochimique dans la région de l'ancien secteur minier de Salsigne (Aude) rapport provisoire (06/2021) ;
- données BRGM : Elaboration d'un système d'information sur les sols (SIS) sur l'emprise de l'onde de crue de l'Orbiel s'étant produite à l'automne 2018 (données brutes géoréférencées) ;
- rapport BRGM/Minelis DPSM-Salsigne Suivi de l'ennoyage de la mine d'or de Salsigne à la fin 2007 (04/07/2008) ;
- rapport Envisol de tâche 1: R-PJ-KC-2001 (ce rapport intègre des références d'études antérieures);
- rapports Envisol de tâche 2 : R-PJ-2002-3b (04/2020), R-IB-2002-1a (05/2020), R-IB-2004-1a (06/2020), R-IB-2005-1a (08/2020), R-KC-2005-1a (08/2020), R-IB-2007-1a (08/2020), R-IB-2009-1a (10/2020), R-IB-2009-2a (10/2020), R-IB-2010-1a (12/2020), R-LL-2012-1a (02/2021), R-LL-2012-2a (02/2021), R-LL-2012-3a (02/2021);
- rapport Envisol : rapport MO-KC-2010-2c, Protocole d'investigations (10/2020) ;
- rapport Envisol : MO-KC-2010-1b, Protocole préleveur (10/2020) ;
- rapports Envisol liés à un incident de prélèvement des préleveurs automatiques : R-KC-2102a et R-LL-2102-2b (02/2021) ;
- rapport Evadies : rapport 3020, Mesures des dépôts atmosphériques sur l'ancien district minier de Salsigne (11) – résultats de la campagne de surveillance environnementale réalisée à l'hiver 2020 (15/05/2020);

- rapport Evadies : rapport technique 7020 V3.0, Mesures des dépôts atmosphériques sur l'ancien district minier et industriel de la vallée de l'Orbiel (11) - résultats de la campagne de surveillance environnementale réalisée à l'été 2020 (1/02/2021);
- rapport Evadies : rapport d'étape 10620, Etude des poussières atmosphériques dans le district minier de la vallée de l'Orbiel (11). – résultats de la campagne n°1/3 de surveillance environnementale réalisée à l'été 2020 (15/02/2021);
- rapport Evadies : rapport 0321, Etude des poussières atmosphériques dans le district minier de la vallée de l'Orbiel (11) – résultats de la campagne n°2/3 de surveillance environnementale réalisée à l'automne 2020 (15/02/2021);
- rapport Evadies : rapport 6521, Etude des poussières atmosphériques dans le district minier de la vallée de l'Orbiel (11) – synthèse des résultats (03/06/2021);
- rapport et vidéos Accès réseau : rapport N° VIL05121909EX, Rapport de téléinspection de canalisation (5 décembre 2019) ;
- guide DDTM. (2014) : Guide méthodologique pour la gestion des eaux pluviales dans les projets d'aménagement, Tome 2 : Méthode d'investigation et de dimensionnement ;
- rapport ICF : Etude de la pollution et des risques présentés par 6 sites miniers acquis par l'Etat et proposition de travaux à réaliser Salsigne (Aude) ; rapport n°AIX/05/063-ID/Phase 2-VP3 (17/01/2008) ;
- suivi MINELIS : Suivi de la qualité des eaux superficielles du Grésillou (2010) ;
- rapport SRK : Prédiction des niveaux d'eau après fermeture (1998).

Les rapports d'ENVISOL (en gras), concernant le détail des protocoles d'investigations, sont annexés au rapport.

Annexe 1. Rapport des protocoles d'investigations d'ENVISOL

3 CONTEXTE NORMATIF ET REGLEMENTAIRE

3.1 Contexte réglementaire et normatif pour le prélèvement des sols et sédiments

Pour la réalisation des prélèvements des sols et sédiments, Envisol s'appuie sur les normes en vigueur, listées ci-dessous :

- NF ISO 10381-2 « Qualité du sol Echantillonnage ; Partie 2 : Lignes directrices pour les techniques d'échantillonnage » (03/2001) ;
- NF ISO 10381-5 « Qualité du sol Echantillonnage ; Partie 5 : Lignes directrices pour la procédure d'investigation des sols pollués en sites urbains et industriels » (12/2005) ;
- NF ISO 10381-8 « Qualité du sol Echantillonnage ; Partie 8 : Lignes directrices pour l'échantillonnage des stocks de réserve » (09/2008) ;
- Norme ISO 5667-12 « Qualité de l'eau Échantillonnage Partie 12 : Recommandations concernant l'échantillonnage des sédiments dans les rivières, les lacs et les estuaires » (07/2017) ;

 ISO 5667-15 « Qualité de l'eau — Échantillonnage — Partie 15 : Lignes directrices pour la conservation et le traitement des échantillons de boues et de sédiments » (10/2009).

3.2 Contexte réglementaire et normatif pour le prélèvement des eaux superficielles

Pour la réalisation des prélèvements des eaux superficielles, Envisol s'appuie sur les normes en vigueur, listées ci-dessous :

- norme AFNOR T90-511 (ISO 5667-1 ou NF EN 25667-1) « Qualité de l'eau. Echantillonnage. Partie 1 : Guide général pour l'établissement des programmes d'échantillonnage » (03/2007),
- norme AFNOR T90-512 (ISO 5667-2 ou NF EN 25667-2) « Qualité de l'eau. Echantillonnage. Partie 2 : Guide général sur les techniques d'échantillonnage » (12/1993),
- norme AFNOR T90-513 (NF EN ISO 5667-3) « Qualité de l'eau. Echantillonnage. Partie 3 : Guide général pour la conservation et la manipulation des échantillons » (06/2018),
- norme ISO 5667-6 « Water quality Sampling Partie 6 : Lignes directrices pour l'échantillonnage des rivières et des cours d'eau » (07/2014)
- norme ISO 5667-14 « Water quality Sampling Partie 14: Guidance on quality assurance of environmental water sampling and handling» (09/2017)
- Norme FD T90-523 « Qualité de l'eau Guide d'échantillonnage pour le suivi de la qualité des eaux dans l'environnement Partie 1 : échantillonnage d'eau en rivières et canaux Qualité de l'eau Guide d'échantillonnage pour le suivi de la qualité des eaux dans l'environnement Partie 1 : Echantillonnage d'eau en rivières et canaux » (04/2019).

4 DESCRIPTION DU SITE D'ETUDE ET DES ZONES D'INTERET

La zone d'étude concerne les sites de Nartau et Ramèle, localisés sur la cession de Villanière (Aude). Plusieurs zones d'intérêt ont été identifiées au sein de ces sites et à proximité du Grésillou. Ces zones d'intérêt regroupent des milieux sources primaires et des milieux sources secondaires.

Milieux sources primaires :

- la verse principale et les verses secondaires de Nartau,
- les bâtiments de Nartau,
- la zone de résidus de four,
- la plateforme Marty,
- la verse de Ramèle (dont la plateforme Ramèle),
- la verse annexe de Ramèle,

Milieu sources secondaires et/ou voie de transfert :

- le ruisseau du Grésillou,
- le ruisseau de l'Hort Estiou,
- le ruisseau de la Villanière,
- la rivière Orbiel,
- les eaux souterraines d'une manière générale ainsi que celles du puits du réservoir minier dont les connaissances sont très limitées et peuvent constituer une voie de transfert de pollution potentielle.

Ces zones d'intérêt sont décrites dans les chapitres ci-après et localisées en Figure 1.

Figure 1 : Carte de localisation des zones d'intérêt

4.1 Verse principale et verses secondaires de Nartau

De 1896 à 1910, le site de Nartau a accueilli, en rive gauche du Grésillou, une exploitation souterraine (6 niveaux) associée à la mise en verse de stériles. On distingue une verse principale et deux verses secondaires constituées de plusieurs zones de matériaux stériles issues de la mine de Nartau. Ces stériles ont été déversés à partir des ouvrages débouchant au jour des différentes galeries d'exploitation. Ces matériaux sont issus de triage à la main lors de l'exploitation du gîte de Nartau et incluent notamment des dépôts de produits blanchâtres constitués d'arséniate de fer.

En complément, des résidus de fonderie ou de four auraient pu être déversés sur ces verses (rapport ENVISOL tâche 1, R-PJ-KC-2001, 2021).

Un réseau de galeries existe sur le secteur de Nartau. Elles sont réparties selon 6 niveaux et un travers-banc les reliait à la plateforme Marty (Puits Marty). La verse principale présente un dénivelé d'environ 85 m.

Figure 2. Illustrations des verses de Nartau

4.2 Bâtiments de Nartau

Les bâtiments de Nartau sont à l'état de vestiges où persistent encore des matériaux de démolition, tels que des blocs de béton, des poutres ou encore des briques. Des matériaux remaniés (stériles) y sont également stockés. La topographie actuelle au droit de certains bâtiments est différente de celle sur laquelle les bâtiments étaient implantés, supposant un remblaiement au droit d'ancien bâtimpent maintenant démolis.

Figure 3. Illustration des anciens emplacements des bâtiments de Nartau et des matériaux de stériles (matériaux remaniés)

4.3 Zone des résidus de four

La zone de résidus de four correspond à une zone où des résidus de four ont été stockés par le passé (i.e ancienne zone de résidus de four, voir glossaire), en rive gauche du Grésillou. Ces résidus de four ont été en partie décapés et transférés sur la plateforme Marty en 2015. Le décapage de ces matériaux a été réalisé en prenant un seuil de coupure de 3 000 mg/kg en arsénic et en vérifiant l'absence de matériaux blanchâtres.

D'après le rapport de DOE/MOE de Minélis de 2015 (ENVISOL, 2021), les matériaux excavés ont été substitué par des matériaux du lit du Grésillou recueillis en amont de la zone.

Sur la zone, des affaissements dus à la crue d'octobre 2018 sont visibles avec des zones emportées par celle-ci (Figure 46). Des tas de résidus, après la crue de 2018, sont également visibles, révélés et/ou apportés par celle-ci.

Figure 4. Illustration de la zone des résidus de four

4.4 Plateforme Marty

La plateforme Marty est située au nord de la verse de Ramèle, en rive gauche du ruisseau du Grésillou. L'activité passée sur cette zone reste inconnue.

En 2015, les matériaux de la zone de résidus de four ont été stockés sur cette plateforme. Ces matériaux apportés ont été recouverts de matériaux sains sur une épaisseur de 50 cm environ, désormais végétalisés.

Elle représente une plateforme plane et légèrement surélevée par rapport au lit du Grésillou (Figure 6). En sus, des matériaux sous la forme d'un muret ont été mis à nus par le Grésillou lors de la crue de mai 2020. En flanc de versant (partie nord) des tas de matériaux ont également été mis en évidence.

Le puits Marty permettait l'accès au travers-banc Marty puis aux galeries d'exploitation de Nartau. Celui-ci a été comblé en 2003 et demeure visible depuis la surface (source : rapport Tâche 1, ENVISOL, R-PJ-KC-2001-Phase1-1d (Expertise archéologique, Kammenthaler Eric, 2003)).

Comme pour la zone des résidus four, cette zone, relativement plane, ne présente pas d'enjeux de stabilité particuliers en soit. Sous la plateforme, deux galeries sont présentes et constituent un réseau de drainage souterrain permettant de limiter les risques de mise sous pression de la verse qui pourrait être liés à des circulations d'eau en sub-surface.

En revanche, elle est située également dans la zone de crue du Grésillou et est régulièrement érodée comme cela s'est produit lors des crues de 2018 et de 2020.

Légende :

Galeries souterraines (exploitation) Réseau hydrographique du bassin versant du Grésillou

Ouvrage débouchant au jour

 Client : BRGM

 Site :
 Mine de Nartau et Verse de Ramèle (Secteur de Salsigne)

 Titre :
 Localisation des galeries sur la plateforme Marty

Dernière modification : 10/05/21 Version : a

Figure 5. Localisation des galeries reliées au puits Marty

Figure 6. Illustrations des éléments constitutifs de la plateforme Marty

4.5 Verse de Ramèle

La verse de Ramèle a été construite au droit de l'emplacement de l'ancienne fonderie de la Villanière. Elle est constituée de matériaux divers (stériles principalement) stockés selon une alternance de talus et de banquettes plurimétriques aujourd'hui partiellement revégétalisée. Historiquement, deux zones de stockage, de scories / déchets de grillage, et de minerai étaient présentes sur le site.

Des galeries d'exploration sont présentes sous la verse de Ramèle (galerie Marguerite, galerie d'aérage, travers-banc Hort-Estiou). Des produits (anhydride arsénieux) y auraient été stockés dans les années 30 et plus de 20 tonnes ont fait l'objet d'une évacuation en 1983.

Cette verse est bordée en pied par le ruisseau du Grésillou et au sud-est par l'Hort Estiou ainsi que par la plateforme de Ramèle. En pied de verse, une zone érodée par le Grésillou a été observée, à proximité des anciens bassins de décantation de l'usine de Villanière. Des zones de ravinement ont été observées dans le corps de verse.

Figure 7. Illustration de la verse de Ramèle (ancienne fonderie de la Villanière en vert) et de la zone érodée en pied de verse.

4.6 Verse annexe de Ramèle

La verse annexe de Ramèle est constituée de matériaux déversés en amont de la route communale « Résidence plein Soleil ».

Figure 8. Illustration de la verse annexe de Ramèle

4.7 Le Grésillou

Le ruisseau du Grésillou est un cours d'eau de type torrentiel qui se forme à partir de 2 affluents principaux longs de 5 km linéaires chacun. Le Grésillou parcourt environ 900 m linéaires avant de longer en rive gauche la verse de Nartau, puis de Ramèle en rive droite. Il est busé sur une longueur d'environ 380 m à l'aval immédiat de la plateforme Marty jusqu'à l'aval immédiat de la verse de Ramèle où il est alimenté par des écoulements temporaires de l'Hort Estiou en rive droite. Plus en aval, il est alimenté par deux ruisseaux mineurs (absence d'appellation) en rive gauche, puis le ruisseau de la Villanière en rive droite avant de se jeter dans l'Orbiel environ 3 km après la verse de Ramèle. Le Grésillou s'assèche en période estivale et a connu des crues importantes comme celles d'octobre 2018 ou de mai 2020.

Deux zones majeures d'accumulation de sédiments déposés au cours d'anciennes crues le long du cours d'eau, ont été observées (paléo-sédiments).

Réseau hydrographique du bassin versant du Grésillou

Figure 9. Illustration des zones de paléo-sédiments

4.8 L'Hort Estiou

Le ruisseau de L'Hort Estiou circulait autrefois au sein d'un talweg situé sous la topographie actuelle de la verse de Ramèle, en passant par la plateforme de Ramèle pour ensuite rejoindre le Grésillou (Figure 10). Depuis l'édification de la verse de Ramèle (années 1986-1989), cette zone d'écoulement préférentielle des eaux a pour bassin versant principal le flanc sud-est de la verse de Ramèle. Sur sa rive droite se situe la verse annexe de Ramèle. Cette zone d'écoulement non pérenne est finalement artificiellement chenalisée en contre bas de la route avant de rejoindre le Grésillou. Cet ancien ruisseau présente un écoulement temporaire et est la majorité du temps asséché en contrebas de la route au niveau de la zone canalisée. Même si les écoulements ne sont pas observés en surface, l'Hort Estiou peut être le siège de circulations de surface et subsurface dans les couches supérieures de la verse de Ramèle, au niveau de la plateforme Ramèle qu'il traverse mais également le long de l'ancien talweg.

Figure 10. Localisation de l'Hort Estiou avant la mise en place de la verse (Haut, trait rose) et après (Bas, trait bleu) avec photographie depuis la route (vue vers l'amont)

4.9 Le ruisseau de Villanière

Le ruisseau de Villanière prend sa source en contrebas du village Villanière notamment à proximité du puits Castan (puits d'exploitation de la mine à ciel ouvert de Salsigne). De là, il parcourt environ 1,5 km avant de se jeter dans le Grésillou qui lui-même se jette 200 m après dans l'Orbiel.

Au cours de la présente étude, le ruisseau de Villanière a toujours été asséché.

Figure 11. Illustration du ruisseau de Villanière à proximité de sa confluence avec le Grésillou

4.10 L'Orbiel

L'Orbiel est le confluent du Grésillou, il possède 19 autres affluents avant de se jeter dans l'Aude. La confluence entre le Grésillou et l'Orbiel se situe au niveau du village de Lastours.

4.11 Les eaux souterraines du réservoir minier

Les eaux souterraines du réservoir minier sont accessibles depuis le point d'observation des eaux du réservoir minier (Cheminée panneau sud) localisé sur la Figure 1.

Cet unique accès aux eaux souterraines nous donne une indication ponctuelle de la chimie des eaux souterraines du réservoir minier.

5 SYNTHESE DU SCHEMA CONCEPTUEL INITIAL

Le schéma conceptuel initial a été défini au regard de : la compréhension de la dynamique du site, la synthèse des documents existants et l'analyse des données disponibles, tel qu'il a été présenté au cours de l'étude de tâche 1 (source : rapport Envisol référencé R-PJ-KC-2001). L'aquisition de connaissances depuis le début de l'étude a induit des évolutions par rapport au schéma conceptuel présenté en tâche 1.

Conformément à la méthodologie nationale relative à la gestion des sites et sols pollués (textes d'avril 2017), le schéma conceptuel initial a pour but de mettre en évidence les sources, voies de transfert et cibles éventuelles afin d'orienter en première approche les investigations à mener :

- les sources de pollution contenant des substances susceptibles de générer un impact ;
- les **différents milieux de transfert (vecteurs)** des substances vers un point d'exposition et leurs caractéristiques ;
- les cibles situées au point d'exposition.

La notion de source/vecteur/cibles dans le cadre de la présente étude ne concerne strictement que l'emprise de la vallée du Grésillou. En effet, les voies de transfert et cibles potentielles comprises dans le secteur aval de la vallée de l'Orbiel sont prises en charge dans le cadre d'autres actions menées par ailleurs notamment dans le cadre du plan d'action de la Préfecture et de la surveillance environnementale du secteur et n'est pas inclus dans le périmètre de la présente étude. Il en est de même pour les eaux souterraines du réseau minier dont le suivi est traité indépendamment.

Les sources de pollution, milieux de transfert et cibles sont présentés pour l'usage actuel dans les paragraphes ci-dessous.

5.1 Sources

Les sources de pollution potentielles identifiées, sont présentées dans le tableau en pages suivantes.

Secteurs de Nartau
Verse principale et verses secondaires de Nartau
Bâtiments de Nartau
Zone de résidus de four
Plateforme Marty

Tableau 1. Listing des 7 zones sources potentielles

Secteur de Ramèle		
Verse de Ramèle		
Verse annexe de Ramèle		
Secteur de la vallée du Grésillou		
Sédiments et paléo-sédiments du Grésillou		

5.2 Transferts

Les voies de transfert représentent les voies de migration des substances dans les différents milieux considérés (transfert potentiel par envol de poussières, transfert via un dégazage des sols et/ou des eaux souterraines...).

A ce stade de l'étude, les voies de transfert retenues sont :

- Transfert de composés via les eaux de ruissellement et/ou d'infiltration vers les eaux de surface du ruisseau du Grésillou ;
- Transfert de composés via l'envol de poussières issues de surfaces non recouvertes (Verse de Nartau).
- Transfert de composés vers le gibier. Cette voie de transfert potentielle théorique existe du fait de l'accès aux sources par le gibier.

Les voies de transfert non retenus sont :

- « Transfert de composés présents dans les sols vers les végétaux cultivés pour l'alimentation humaine » en raison de l'absence de jardins potagers et de surfaces agricoles cultivées au niveau de la vallée de Grésillou.
- « Transfert potentiel de composés des sols vers les eaux souterraines » : Le transfert des composés des sols vers les eaux souterraines est possible soit par infiltration notamment au niveau de la verse de Ramèle soit via les pertes du Grésillou. Toutefois, les écoulements de sub-surface peuvent rejoindre le Grésillou et sont ainsi considérés dans les transferts depuis la verse de Ramèle vers le Gresillou. Ils peuvent également rejoindre le réservoir de la mine et la problématique des flux souterrains se confond alors avec celle du secteur de la mine n'appartenant plus au bassin versant du Grésillou, objet de la présente étude ;
- « Transfert via le dégazage de composés volatils depuis les sols et/ou les eaux souterraines » en l'absence de substances volatiles.

5.3 Cibles

Les cibles potentielles (adultes et plus ponctuellement enfants) au niveau de la vallée du Grésillou (secteur d'étude) sont constituées des travailleurs ponctuels, du garde forestier et de chasseurs,

Les secteurs de Ramèle et Nartau sont interdits d'accès par panneautage. Néanmoins, des promeneurs et des pêcheurs peuvent être ponctuellement rencontrés.

5.4 Voies d'exposition des cibles

Le tableau ci-dessous présente les voies d'exposition retenues ou non à ce stade. La détermination des voies d'exposition prédominantes permet d'orienter le choix de mesures de gestion dans un objectif de réduction des flux d'As vers les enjeux et de formuler des recommandations pour d'éventuelles phases ultérieures.

Voies d'exposition potentielle pour les adultes et les enfants	Commentaires	Retenue oui/non
Ingestion de sols de surface	<u>Au droit du secteur d'étude</u> : les secteurs de Ramèle et Nartau sont interdits d'accès par panneautage. Concernant les cibles autorisées (suivi des verses) les modalités de prévention (port de masque, lavage des main) permettent d'écarter cette voie d'exposition.	Non
Inhalation de poussières	Voie d'exposition très localisée : à moins de quelques centaines de mètres de la verse de Nartau et interdiction d'accès à la zone. Protection des travailleurs susceptibles d'intervenir sur place.	Fonction de l'étude poussière
Ingestion de gibier issu de la chasse)	Chasse autorisée mais voie non retenue car en cours de gestion (conventions)	Non
Ingestion indirecte de végétaux aériens et/ou racinaires autoproduits	<u>Au droit du secteur d'étude :</u> absence de cultures potagères ou fruitières au droit de la zone d'étude.	Non
Inhalation de composés volatils issus du sol ou des eaux souterraines dans l'air ambiant	Absence de composes volatils	Non
Contact cutané avec les sols de surface	<u>Au droit du secteur d'étude</u> : les secteurs de Ramèle et Nartau sont interdits d'accès par panneautage. Concernant les cibles autorisées (suivi des verses) les modalités de prévention (port de tenue de travail) permettent d'écarter cette voie d'exposition.	Non

L'analyse du recensement des voies de transfert puis d'exposition conduit à mettre en avant la voie de transfert via les eaux du Grésillou en direction de l'aval (Orbiel). La voie d'exposition potentielle via les poussières a été investiguée par l'étude poussière qui sera résumé (chapitre 9.3) et pris en compte dans cette étude.

Les autres des voies d'exposition potentielles ont été écartées pour la vallée du Grésillou au regard des restrictions d'usages existantes (contact et ingestion de sols, pêche) et de conventions à venir (chasse).

BRGM – La Villanière (11) Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Les investigations ont donc ciblé la caractérisation des sources et le Grésillou, vecteur proncipale du flux d'Arsenic. L'accent sera porté sur l'appréhension des transferts d'eau vers le Grésillou au droit de la vallée du Grésillou.

6 STRATEGIE D'INVESTIGATIONS ET METHODOLOGIE

Au regard des informations synthétisées dans le schéma conceptuel et de l'ensemble des contraintes de l'étude, les investigations réalisées avaient pour objectifs, sur la base du principe de proportionnalité, de :

• cartographier les impacts au sein des zones d'intérêt.

Au sein des verses, les matériaux ont été caractérisés chimiquement. Des zones ciblées, correspondant à des matériaux de lithologies, couleurs différentes ou des zones de tas, d'accumulation et d'érosion, ont été visées. Ces zones constituent les sources primaires de pollution.

Les sédiments ont été caractérisés chimiquement le long du Grésillou et de l'Orbiel. Les sédiments accumulés (paléo-sédiments) ont également été caractérisés chimiquement. Les sédiments et paléo-sédiments constituent une source secondaire de pollution particulièrement mobilisable par les eaux superficielles du Grésillou.

La qualité chimique des eaux superficielles du Grésillou, source secondaire, a été évaluée.

- réaliser un modèle conceptuel hydrogéologique du site d'étude. Le milieu eau est le principal vecteur et milieu de transfert des pollutions. Des investigations ont été réalisées afin de construire un modèle conceptuel hydrogéologique du site d'étude (suivi de la pluviométrie, mesures de débits, observations des résurgences et pertes).
- appréhender les flux de transfert des polluants à partir du milieu sol des verses : dans un premier temps en caractérisant la dynamique des écoulements de surface et des eaux souterraines, puis dans un deuxième temps en évaluant le caractère mobilisable des matériaux lié à leur chimie, minéralogie et granulométrie.
- appréhender les flux de transfert des polluants à partir du Grésillou : par la mesure et le calcul des débits au sein du Grésillou.

Chaque milieu investigué a suivi une stratégie d'investigations adaptée. Les chapitres suivants sont donc découpés par milieu :

- les milieux Sol/roches et paléosédiments ;
- le milieu Sédiments ;
- les milieux Eaux superficielles et souterraines.

6.1 Milieux Sol/roches, paléo-sédiments et sédiments

6.1.1 Stratégie d'investigations des sols/roches et paléosédiments

Les sols, les roches et paléo-sédiments des zones d'intérêt étant complexes de par leur granulométrie et leur nature, différentes approches ont été mises en œuvre afin de caractériser au mieux les milieux sources et leur transfert associé :

- approche pétrographique macroscopique ;
- approche physique ;
- approche minéralogique ;
- approche chimique.

La stratégie d'investigations a été élaborée en deux phases :

1) Campagne de reconnaissance

Cette campagne de reconnaissance avait pour objectif d'orienter et cibler les investigations de la seconde campagne. Cette campagne de reconnaissance a consisté à identifier les faciès, réaliser une inspection visuelle et caractériser chimiquement les matrices (sols et blocs) de surface à l'aide d'un spectromètre portable à fluorescence de rayons X (pXRF).

Une description des zones d'accumulation des sédiments et des zones d'érosion, a été réalisée.

Cette campagne de reconnaissance a été guidée par les éléments de caractérisation disponible dans le rapport d'ICF 2007 (rapport ENVISOL tâche 1, R-PJ-KC-2001, 2021).

2) Campagne d'investigations

Dans un deuxième temps, lors de la campagne d'investigation, des prélèvements ont été effectués sur les zones ciblées : zones à fortes teneurs en arsenic, zones de faciès caractéristiques, zones ayant accueilli une activité, zones d'accumulation de sédiments (paléo-sédiments) et zones d'érosion.

Sur l'ensemble des matrices prélevées, une mesure pXRF a été réalisée afin d'orienter les analyses spécifiques laboratoires. Plusieurs analyses laboratoire ont été effectuées afin de répondre aux objectifs suivants :

Analyses laboratoires	Principes	Objectifs
ICP-MS/AES	Caractérisation chimique par analyses élémentaires après minéralisation d'une matrice solide en voie humide	Ces mesures servent à calibrer les mesures de terrain pXRF, plus nombreuses, pour cartographier les impacts.
		Certains éléments uniquement analysés par cette technique (or, sulfates), complètent la caractérisation chimique des zones d'intérêt.
Analyses granulochimiques (combinaison des analyses	Caractérisation chimique spécifique des fractions 0 – 63 μ m, 63 – 200 μ m, 200 – 2 000 μ m.	Ces analyses permettent d'évaluer les masses en polluants contenues dans chaque fraction granulométrique.
granulométriques)		Elle permet donc d'évaluer la part d'éléments plus mobilisable c'est à dire celle contenue dans les fractions les plus fines.
Diffraction des rayons X (DRX)	Caractérisation minéralogique d'une matrice.	Cette technique quantifie les phases porteuses ou potentiellement porteuses d'arsenic afin d'évaluer sa possible mobilisation. En effet, certaines phases cristallines peuvent piéger l'arsenic.
Extractions séquentielles	Réalisation d'attaques chimiques successives permettant chacune la dissolution de différentes fractions solides de nature différente. Les espèces chimiques libérées sont	Elle permet de déterminer la nature des liaisons des espèces métalliques dans le sol, chaque étape d'extraction étant supposée détruire l'agent liant le polluant et la fraction solide du sol.
	identifiées à chaque étape d'extraction.	Elle permet ainsi de déterminer dans quels types de phase solide ou fraction sont distribués les éléments.
		Elle permet également d'appréhender le caractère lixiviable de l'arsenic.
Pack ISDI	Caractérisation chimiques élémentaires sur brut et éluât (conformément à l'arrêté du 12/12/2014)	Les résultats permettent de déterminer l'acceptabilité en filière de gestion des déchets.
		Ils permettent également d'appréhender le caractère lixiviable de l'arsenic.

Chaque méthode analytique est décrite précisément dans le paragraphe 6.1.3.

6.1.2 Stratégie d'investigations des sédiments

La stratégie d'investigations des sédiments s'est organisée en plusieurs campagnes d'investigations :

- campagnes mensuelles : sept campagnes mensuelles de caractérisation chimique des sédiments en eau en plusieurs points stratégiques le long du Grésillou et à sa confluence avec l'Orbiel. Les points de prélèvement correspondent aux stations de prélèvement des eaux superficielles. Ces campagnes permettent de caractériser chimiquement les sédiments et d'observer une potentielle variabilité des concentrations en éléments dans les sédiments.
- campagne de reconnaissance : des sédiments tout le long du Grésillou et de ses affluents, à intervalle régulier, en période sèche, par caractérisation chimique au moyen d'un pXRF. Cette campagne permet de cartographier tout le long du Grésillou les concentrations en arsenic et d'identifier les zones de fortes concentrations c'est à dire potentiellement les zones de transfert.
- campagne d'investigations : orientée grâce à la campagne de reconnaissance, incluant des prélèvements, des analyses systématiques au pXRF et des analyses spécifiques en laboratoire. Le programme analytique laboratoire est identique à celui réalisé sur les sols et paléo-sédiments.

6.1.3 *Méthodologies d'échantillonnage et d'analyses*

6.1.3.1 Méthode d'échantillonnage

Fractions granulométriques

Dans un souci de représentativité et dans la mesure où les matrices de sols/roches et des (paléo-)sédiments ont des granulométries diverses (10^{-6} m – 10^{-1} m, des argiles aux blocs), les prélèvements d'échantillons ont été réalisés sur la fraction fine (<2mm) et la fraction grossière, appelée bloc (> 2mm).

En effet, sur certaines zones d'intérêt, les blocs sont en proportion importante et peuvent donc constituer une masse importante de polluants. Par ailleurs, l'observation de minéraux arséniés (tels que la scorodite) renforce l'intérêt de caractériser la fraction grossière.

Les fractions fines sont potentiellement les fractions les plus réactives et mobilisables, il est donc important de les caractériser également. Afin d'assurer une bonne inter-comparaison entre les différentes zones d'intérêt, les différentes matrices et les différentes méthodes analytiques, le support commun a été défini comme étant la fraction 0-2 mm. Conformément aux recommandations du groupe de travail sur l'analyse des sols dans le domaine des sites et sols pollués (BRGM/RP-64749-FR de mai 2015), les éléments suivants expliquent ce choix :

- c'est une fraction granulométrique relativement bien représentée au sein des sols/roches et (paléo-)sédiments ;
- cette fraction est également bien représentée au sein de toutes les zones d'intérêt ;
- c'est la fraction représentative pour des analyses au pXRF, outil analytique *in situ* d'orientation de l'étude.

Les échantillons ont été tamisés à 2 mm pour récupérer les fractions fines (<2mm) d'une part, puis le rebus a été récupéré pour constituer les échantillons des fractions grossières (blocs) d'autre part (**Figure 12**). Pour chaque échantillon et fraction, les pesées ont été réalisées. Les masses des échantillons peuvent atteindre jusqu'à 6 kg pour être représentatif.

Des précautions ont été prises pour la constitution des échantillons blocs afin d'assurer la représentativité des échantillons : prélèvement de tous les faciès observés macroscopiquement et conservation de leur proportion.

Echantillons ponctuels et composites

Les analyses ne sont pas systématiques sur l'ensemble des échantillons. Afin d'optimiser le nombre d'analyses, des composites, représentatifs d'une zone cible, ont été réalisés. Seuls les mesures XRF ont été réalisées sur l'ensemble des échantillons ponctuels.

Les critères de sélection des échantillons ponctuels, pour réaliser un échantillon composite, sont : zone ciblée identique, mêmes observations macroscopiques et respect de la gamme des concentrations en arsenic observées sur la zone cible. Une attention particulière a été portée sur les masses des échantillons et leur fraction afin de ne pas sur-représenter un échantillon ou une fraction par rapport à une autre.

Figure 12. Schématisation de la stratégie d'échantillonnage et d'analyse pour les sols/roches, paléo-sédiments et sédiments

Le détail des échantillons ponctuels prélevés et composites réalisés est fourni par zone d'intérêt dans le chapitre7.5.

6.1.3.2 Méthodes analytiques utilisées

Dans ce rapport, les concentrations seront exprimées en mg/kg et % notamment quand cellesci seront supérieures à 1000 mg/kg. Cela permet de visualiser les différents ordres de grandeurs observés.

6.1.3.2.1 Spectromètre portable de fluorescence X (pXRF)

Cette methode est mise en œuvre afin de caractériser chimiquement les sources potentielles que sont les sols, les roches et les sédiments. Elle permet la quantification *in situ* des teneurs en métaux des matrices solides. Le pXRF, appareil portatif, permet un screening des concentrations en métaux de l'ensemble des échantillons directement sur site dans l'objectif de cartographier une zone importante du site et de sélectionner les échantillons pour analyses au laboratoire.

Les modalités d'utilisation de l'appareil ont inclus :

- la mise en place d'un protocole de calibration et d'assurance qualité ;
- l'évaluation des incertitudes instrumentales et des limites de quantification.

Ces modalités sont détaillées en Annexe 2.

Annexe 2. Modalités d'utilisation du spectromètre portable de fluorescence X (pXRF)

Les éléments importants sont notifiés ci-dessous :

- le support d'échantillon adapté à cette méthode analytique est un échantillon dont la fraction granulométrique est inférieure à 2 mm. Les mesures sur des fractions plus grossières donc plus hétérogènes (notamment les blocs) sont donc indicatives mais néanmoins prises en compte dans les résulats en raison de l'abondance de la prépondérance de cette fraction,
- la liste d'éléments mesurés est la suivante : Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Pr, Nd, W, Hg, Pb, Bi, Th, U et éléments légers tout confondu,
- des échantillons sélectionnés sur une large gamme de concentration en arsenic ont été analysés au laboratoire (ICP après minéralisation à l'eau régale) en plus de la mesure au pXRF dans l'objectif d'obtenir une calibration site spécifique,
- les corrélations entre les mesures pXRF et les analyses laboratoires sont comprises entre 0,7 et 1 pour les éléments suivants : As (R²=0,99), Bi (R²=0,99), Pb (R²=0,96), Fe (R²=0,94), Ni (R²=0,85), Cu (R²=0,97), Ca (R²=0,95), Zn (R²=0,97) et S (R²=0,76). Pour ces éléments, les données pXRF ont été corrigées avec les droites de corrélation. Seuls, les éléments Cr, Mg, Co et Al, ont montré de mauvaise corrélation (R²< 0,33). Pour ces éléments, les données pXRF n'ont pu être corrigées et sont donc considérées comme qualitatives.

Dans l'ensemble du rapport, les tableaux de résultats au pXRF ont été réalisés en considérant :

- une correction des concentrations en utilisant les droites de corrélations avec les mesures laboratoires ;
- une concentration de LQ/2 pour les échantillons inférieurs à la LQ ;
- une moyenne de trois mesures sur l'ensemble des échantillons.

6.1.3.2.2 Spectromètre de masse/optique à plasma à couplage inductif (ICP-MS/AES)

La méthode d'analyse laboratoire ICP-MS/AES après minéralisation d'une matrice solide en voie humide permet sa caractérisation chimique par analyses élémentaires. Elle est utilisée afin de caractériser chimiquement les sources potentielles sous forme de sols, de roches ou de sédiments.

Le processus de minéralisation à l'eau régale (HNO₃+HCl) ne dissout généralement pas la totalité de la matrice solide à analyser ce qui peut introduire des biais en particulier pour les concentrations des éléments traces. Afin de réduire ce biais, l'ajout d'acide fluorhydrique (HF) à l'eau régale permet une minéralisation totale (en théorie). Nous noterons les analyses au spectromètre de masse/optique à plasma à couplage inductif comme suit :

- après minéralisation à l'eau régale (ICP) ;
- après minéralisation totale (ICP*).

Les supports des matrices analysées par cette méthode sont :

- pour les sols et sédiments : la fraction granulométrique 0-2 mm ;
- pour les blocs rocheux : la fraction granulométrique 2-100 mm concassé et/ou broyée.

Les éléments chimiques dosés sont présentés dans le tableau ci-dessous. Notons qu'en raison des réactifs utilisés par la méthode ICP*, les dosages du Ca et du Mg n'ont pas été possibles.

Méthode	Paramètre	LQ	Unité
ISO 10693:1995	Carbonates totaux	2	g/Kg
EPA 9056A 2007	Sulfates	4	mg/kg
EPA 6010D 2018	Or	20	mg/kg
UNI EN ISO 11885:2009	Aluminium	n.d. ^(*)	mg/kg
UNI EN ISO 11885:2009	Argent	1	mg/kg
UNI EN ISO 11885:2009	Arsenic	0,5	mg/kg
UNI EN ISO 11885:2009	Bismuth	40	mg/kg
UNI EN ISO 11885:2009	Cadmium	4	mg/kg
UNI EN ISO 11885:2009	Calcium	400	mg/kg
UNI EN ISO 11885:2009	Cobalt	16	mg/kg
UNI EN ISO 11885:2009	Chrome total	8	mg/kg
UNI EN ISO 11885:2009	Fer	5	mg/kg
UNI EN ISO 11885:2009	Magnésium	200	mg/kg
UNI EN ISO 11885:2009	Nickel	20	mg/kg
UNI EN ISO 11885:2009	Plomb	20	mg/kg
UNI EN ISO 11885:2009	Cuivre	40	mg/kg
UNI EN ISO 11885:2009	Zinc	40	mg/kg
UNI EN ISO 11885:2009	Soufre total	75	mg/kg
NF EN ISO 11885 - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog)	Potassium	20	mg/kg M.S.
NF EN ISO 11885	Sodium	20	mg/kg M.S.

Tableau 2. Méthodes d'analyses chimiques et éléments dosés

(*) : non déterminé

Il est à noter que la LQ de l'or est relativement élevée car celle-ci dépend de la méthode analytique. Néanmoins, à titre indicatif, les concentrations situées entre la limite de détection (LD) et la LQ ont pu être déterminées. Une méthode d'analyse par fire essay pemettrait de diminuer cette LQ.

Pour les campagnes mensuelles de sédiments, ces analyses ont été réalisées par le laboratoire EUROFINS, accrédité COFRAC.

Pour les autres investigations, ces analyses ont été réalisées par le laboratoire Mérieux Nutrisciences, accrédité équivalent COFRAC.

6.1.3.2.3 Analyses granulochimiques

Cette methode est mise en œuvre afin de caractériser chimiquement les sédiments, ou les sédiments en devinir situé sur les berges du Grésillou.

Cette méthode d'analyse combine des analyses ICP/pXRF et granulométriques. La granulométrie est une composante importante dans cette étude car elle permet de caractériser une matrice en termes de :

• réactivité d'un élément d'un milieu : la surface spécifique d'échange étant maximisée pour les particules fines ;

- transport : la fraction granulométrique fine étant plus transportable que la grossière ;
- disponibilité d'un élément vis-à-vis de l'exposition d'une cible : la surface spécifique d'échange étant maximisée pour les particules fines.

Elle a pour objectif de caractériser chimiquement une matrice tout en intégrant une information physique qui renseigne sur son transfert potentiel.

Les fractions granulométriques considérées sont les suivantes :

- pour les sédiments au cours de la campagne de reconnaissance :
 - 0 1 000 µm
 - 0 2000 µm
 - > 2 000 µm

Le tamisage puis les mesures au pXRF ont été réalisés par ENVISOL.

- pour les sols et sédiments au cours de la campagne d'investigations :
 - 0 63 µm
 - 63 200 µm
 - 200 2 000 μm.

Le tamisage puis les mesures ICP/ICP* ont été réalisés par le laboratoire Mérieux Nutrisciences, accrédité équivalent COFRAC.

6.1.3.2.4 Diffraction des rayons X (DRX)

Cette methode est mise en œuvre afin de caractériser la minéralogie des soucres potentielles que sont les sols, les roches et les sédiments.

La méthode d'analyse par diffraction des rayons X permet la caractérisation minéralogique d'une matrice. Elle permet de déterminer les proportions relatives des différentes phases minérales cristallines présentes dans un échantillon.

Elle a pour objectif :

- d'apporter un support à l'interprétation des résultats d'extraction séquentielle ;
- de caractériser les sources : en caractérisant les faciès lithologiques ;
- de caractériser les transferts :
 - en identifiant et estimant les proportions des phases présentes et en particulier celles porteuses ou potentiellement porteuses d'arsenic et déterminer si elles le rendent mobilisable ou à l'inverse si elles le piègent ;
 - en appréhendant les transferts entre les milieux solides via le traçage minéralogique.

On rappelle que les arseniates et les arsenites (par exemple la scorodite) sont des phases arséniées contenant dans leur composition chimique de l'As. On peut également retrouver l'asenic en substitution, en petite quantité, dans les sulfures (par exemple la pyrite) et les sulfates (par exemple la jarosite. Par ailleurs, l'As peut être adsorbé sur les oxydes et hydroxydes de fer (par exmple la geothite), les argiles et les carbonates par des phénomènes de complexation de surface Ceux-ci sont considérés comme des phases potentiellement porteuses d'As.

Les supports des matrices analysées sont :

- pour les sols et sédiments : la fraction granulométrique 0-2 mm broyée ;
- pour les blocs rocheux : la fraction granulométrique 2-100 mm broyée.

La limite de quantification est de 0,1 %.

Les analyses sont réalisées par le laboratoire Mérieux NutriScience selon la méthode UNI EN 13925-2:2006.

6.1.3.2.5 Extractions séquentielles

Cette méthode est mise en œuvre dans l'objectif de déterminer les phases porteuses des éléments chimiques situés dans les sols, les roches et les sédiments.

La méthode d'extraction séquentielle consiste à extraire les éléments étape par étape, avec à chaque étape, un réactif particulier qui extrait les éléments d'un type de phase solide particulier. Elle permet de déterminer dans quel type de phase solide ou fraction sont distribués les éléments. Les fractions et leur réactifs associés sont décrits dans le tableau suivant :

Fraction extraite	Réactifs	L/S	Temps de lixiviation
F0: Soluble dans l'eau	H ₂ O	100	16 h
F1 : Adsorbée sur les surfaces minérales	Na ₂ HPO ₄	40	8 h
F2 : Réductible (Oxydes de Fe, Al et Mn)	(NH4)2C2O4H2O/H2C2O4/C6H8O6	65	30 min
F3 : Oxydable (Sulfures et matière organique)	HNO ₃ /H ₂ O ₂ /CH ₃ COONH ₄	75	5 h
F4*: Résiduelle (toutes phases)	HNO ₃ /HF	40	-

Tableau 3. Modalités des extractions séquentielles

Les étapes F0 et F4 sont indépendantes et les étapes F1, F2 et F3 sont en séquentielle à partir d'une même prise d'échantillon. La concentration des éléments dans la fraction F4 est obtenue par différence entre la concentration dans le solide minéralisé et la somme des fractions F1, F2, F3.

Les supports des matrices analysées sont :

- pour les sols et sédiments : la fraction granulométrique 0-2 mm ;
- pour les blocs rocheux : non concerné.

Les analyses sont réalisées par le laboratoire UT2A selon :

- une méthode interne basée sur la norme ISO 11885 pour les éléments suivants : Al, Ca, Fe, Mg et S ;
- une méthode interne basée sur la norme ISO 17294-2 pour les éléments suivants : As, Bi, Pb et Zn.

Limites du schéma d'extraction séquentielle :

Les extractions ne sont pas parfaites et il est possible qu'une fraction puisse être extraite à une étape précédente. Plusieurs cas sont observés :

- les extractions F1+F2+F3 peuvent être plus efficaces que la minéralisation totale, surtout en présence d'oxyde de fer, facilement dissous au cours de l'étape 2. La minéralisation totale est alors considérée comme étant F1+F2+F3;
- les sulfures de fer sont une espèce réduite qui est en théorie extraite lors de l'extraction de la fraction oxydable F3. Or, en raison de la présence de fer qui est préférentiellement extrait par les oxalates, réactifs utilisés pour l'extraction de la fraction réductible F2, les sulfures de fer sont partiellement dissous lors de cette étape et le S est alors libéré dès la phase F2. Les sulfures de fer, très peu solubles, peuvent également être contenus dans la fraction résiduelle ;
- la présence d'oxalate utilisé lors de l'étpae 2, a pour effet de facilement dissoudre les phases amorphes et/ou de se complexer à certains éléments traces métalliques pour les extraire ;
- les sulfates de fer sont également extraits au cours de trois étapes :1, 2 et 3.

Par ailleurs, l'extraction à l'eau a été réalisée avec un L/S de 100, la différenciant des lixiviations engagées dans le pack ISDI, réalisées avec un L/S de 10. Le rapport liquide/solide (L/S) influence fortement les résultats en fonction de la quantité en composé potientiel disponible pour la lixiviation et sa solubilité. Pour des quantités en polluant largement inférieurs à la solubilité et/ou une spéciation peu disponible à la lixiviation, les lixiviats seront plus concentrés avec ratio L/S plus faible du fait du volume d'eau plus faible pour une même quantité disponible entre les deux L/S. A l'inverse, pour des quantités en composé supérieures à la solubilité et/ou des éléments fortement mobilisation dans l'eau, les lixiviats seront plus concentration avec un ratio L/S plus élevé qui solubilisera une quantité plus importante en composé. Notons toutefois qu'un élément peu soluble dans l'eau reste peu concentré dans le lixiviat, quelque soit le rapport liquide/solide. La comparaison des deux résultats L/S de 10 et de 100 montre globalement des teneurs sur lixiviat en mg/kg plus élevées avec un L/S de 10 (par exemple la comparaison de deux échantillons de caractéristique pétrochimiques identique et de même ordre de grandeur en concentration en As, NAR26-29 et NAR 27-30). Il a été décidé de corrigé les essais de lixiviation L/S=10 en les convertissant en L/S=100 en divisant par 10 les concentrations en mg/l obtenues sur éluat puis une conversion en mg/kg a été réalisée.

6.1.3.2.6 Pack ISDI

Les analyses du pack ISDI : Installation de Stockage de Déchets Inertes (conformément à l'arrêté du 12/12/2014) correspondent à des analyses chimiques élémentaires sur brut et sur éluât (i.e. test de lixiviation). Leur vocation première est de déterminer leur acceptabilité en filière de gestion des déchets mais elles ont aussi pour objectif de :

- caractériser chimiquement les matrices solides ;
- caractériser les transferts de par les mesures sur éluât après test de lixiviation.

Les tests lixiviation consistent à extraire par lessivage/solubilisation les éléments d'une matrice solide en contact avec de l'eau. Les modalités des tests, à savoir une lixiviation en batch durant 24h avec un rapport liquide/solide de 10, ont pour objectif d'approximer la remobilisation des éléments par l'eau de pluie en condition naturelle.

Le support des matrices analysées est un échantillon représentatif de la zone de granulométrie indifférenciée comprenant des sols et des blocs rocheux. L'échantillon est concassé et tamisé à 4 mm avant analyse. Les proportions massiques, des fractions 0-4 et >4 mm, sont déterminées.

La liste des paramètres mesurés et leur méthode associée sont renseignées dans le tableau suivant. Des tests de lixiviation dits « étendus » ont parfois été réalisés, ils consistent à rajouter certains éléments à doser après lixiviation (i.e. Al, Mg, Ca, S, Fe et Bi).

Matrice	Méthode	Paramètre	LQ	Unité
Sur brut	ISO 11465:1993	Matière sèche	n.d.	%
Sur brut	D.M. 13/09/99 II.3	Fraction > 4,00 mm	n.d.	%
Sur brut	D.M. 13/09/99 II.3	Fraction < 4,00 mm	n.d.	%
Sur brut	ISO 10694:1995	Carbone Organique Totale (COT)	0,1	% P
Sur brut	EPA 6010D 2018	Or	20	mg/kg
Sur brut	UNI EN ISO 11885:2009	Aluminium	10	mg/kg
Sur brut	UNI EN ISO 11885:2009	Argent	1	mg/kg
Sur brut	UNI EN ISO 11885:2009	Arsenic	n.d.	mg/kg
Sur brut	UNI EN ISO 11885:2009	Bismuth	40	mg/kg
Sur brut	UNI EN ISO 11885:2009	Cadmium	4	mg/kg
Sur brut	UNI EN ISO 11885:2009	Calcium	400	mg/kg
Sur brut	UNI EN ISO 11885:2009	Cobalt	16	mg/kg
Sur brut	UNI EN ISO 11885:2009	Chrome total	8	mg/kg
Sur brut	UNI EN ISO 11885:2009	Fer	5	mg/kg
Sur brut	UNI EN ISO 11885:2009	Magnésium	400	mg/kg
Sur brut	UNI EN ISO 11885:2009	Nickel	20	mg/kg
Sur brut	UNI EN ISO 11885:2009	Plomb	20	mg/kg
Sur brut	UNI EN ISO 11885:2009	Cuivre	40	mg/kg
Sur brut	UNI EN ISO 11885:2009	Zinc	40	mg/kg
Sur brut	UNI EN ISO 11885:2009	Soufre total	33,4	mg/kg
Sur brut	UNI EN ISO 16703:2011	Hydrocarbures (C10-C40)	10	mg/kg
Sur brut	UNI EN ISO 16703:2011	HCT (nC10 - nC16) (Calcul)	1	%
Sur brut	UNI EN ISO 16703:2011	HCT (>nC16 - nC22) (Calcul)	1	%
Sur brut	UNI EN ISO 16703:2011	HCT (>nC22 - nC30) (Calcul)	1	%
Sur brut	UNI EN ISO 16703:2011	HCT (>nC30 - nC40) (Calcul)	1	%
Sur brut	EN 16167:2018	Somme des 7 PCB (Ballschmiter)	0,65	µg/kg
Sur brut	EN 16167:2018	PCB 101 2,2',4,5,5'-pentachlorobiphényle	0,65	µg/kg
Sur brut	EN 16167:2018	PCB 118 (Pentachlorobiphényle)	0,65	µg/kg
Sur brut	EN 16167:2018	PCB 138 (Hexachlorobiphényle)	0,65	µg/kg
Sur brut	EN 16167:2018	PCB 153(Hexachlorobiphényle)	0,65	µg/kg
Sur brut	EN 16167:2018	PCB 180 (Heptachlorobiphényle)	0,65	µg/kg
Sur brut	EN 16167:2018	PCB 28 (Trichlorobiphényle)	0,65	µg/kg
Sur brut	EN 16167:2018	pcb 52 (Tétrachlorobiphényle)	0,65	µg/kg
Sur brut	ISO 22155:2016	- BTEX Total	0,02	mg/kg
Sur brut	ISO 22155:2016	Benzène	0,009	mg/kg
Sur brut	ISO 22155:2016	Ethylbenzène	0,009	mg/kg
Sur brut	ISO 22155:2016	m,p-Xylene	0,017	mg/kg
Sur brut	ISO 22155:2016	o-xylene	0,009	mg/kg
Sur brut	ISO 22155:2016	Toluène	0,009	mg/kg

Tableau 4. Paramètres et méthodes d'analyse des packs ISDI (étendus ou non)

BRGM – La Villanière (11)

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Matrice	Méthode	Paramètre	LQ	Unité
Sur brut	ISO 18287:2006	HAP Totaux	0,0006	mg/kg
Sur brut	ISO 18287:2006	Acénaphtène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Acenaphtylène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Anthracène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Benzo[a]anthracène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Benzopyrène	0,0006	mg/kg
Sur brut	ISO 18287:2006	benzo[b]fluoranthène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Benzo[ghi]pérylène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Benzo[k]fluoranthène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Chrysène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Dibenz[a,h]anthracène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Phénanthrène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Fluoranthène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Fluorène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Indeno[1,2,3-cd]pyrène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Naphtalène	0,0006	mg/kg
Sur brut	ISO 18287:2006	Pyrene	0,0006	mg/kg
Sur éluat	EN 15216:2007	Résidu sec aprés filtration	n.d.	mg/kg
Sur éluat	EN 1484:1999	Carbone Organique Totale (COT)	1	mg/kg
Sur éluat	EN ISO 10304-1:2009	Chlorures	5	mg/kg
Sur éluat	EN ISO 10304-1:2009	Fluorures	0,5	mg/kg
Sur éluat	EN ISO 10304-1:2009	Sulfates	0,5	mg/kg
Sur éluat	EN ISO 17294-2:2016	Aluminium	0,2	mg/kg
Sur éluat	EN ISO 17294-2:2016	Antimoine	0,005	mg/kg
Sur éluat	EN ISO 17294-2:2016	Argent	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Arsenic	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Baryum	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Cadmium	0,004	mg/kg
Sur éluat	EN ISO 17294-2:2016	Calcium	4	mg/kg
Sur éluat	EN ISO 17294-2:2016	Cobalt	0,005	mg/kg
Sur éluat	EN ISO 17294-2:2016	Chrome total	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Fer	0,1	mg/kg
Sur éluat	EN ISO 17294-2:2016	Magnésium	4	mg/kg
Sur éluat	EN ISO 17294-2:2016	Mercure	0,002	mg/kg
Sur éluat	EN ISO 17294-2:2016	Molybdène	0,005	mg/kg
Sur éluat	EN ISO 17294-2:2016	Nickel	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Plomb	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Cuivre	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Sélénium	0,01	mg/kg
Sur éluat	EN ISO 17294-2:2016	Zinc	0,05	mg/kg
Sur éluat	EPA 6010D 2018	Or	0,2	mg/kg

BRGM – La Villanière (11)

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Matrice	Méthode	Paramètre	LQ	Unité
Sur éluat	UNI EN ISO 11885:2009	Bismuth	0,4	mg/kg
Sur éluat	UNI EN ISO 11885:2009	Soufre total	3,3	mg/kg
Sur éluat	EN ISO 16192:2012	Phénol (indice)	5	mg/kg

Les tests de lixiviation sont réalisés selon la norme UNI EN 12457-2 :2004 par le laboratoire Mérieux Nutrisciences, accrédité équivalent COFRAC.

L'ensemble des borderaux d'analyses des laboratoires est fournis en annexe 3.

Annexe 3. Bordereaux d'analyses laboratoire

6.1.4 Bruit de fond géologique naturel

Le bruit de fond en arsenic du secteur d'étude a été établi sur la base de l'étude « Etablissement du fond pédo-géochimique de l'ancien secteur minier de Salsigne – Rapport provisoire – BRGM/RP-70767-FR - Juin 2021 ». Le rapport a été obtenu au cours de l'étude, les données ont donc été comparées dans un premier temps à la moyenne du site dans le descriptif des données et dans les tableaux de synthèse.

Les données de bruit de fond de référence (fond pédo-géochimique), ont été recherchées dans le but de déterminer les éventuels impacts environnementaux associés aux anciennes activités minières.

Les résultats qui ont servi à l'établissement du bruit de fond sont issus d'analyses :

- in situ par fluorescence X portable (pXRF);
- en laboratoire par ICP-MS et AES après digestion par eau régale.

Les valeurs de comparaison qui ont été retenues pour la présente étude correspondent à la médiane d'une part et au percentile 95 comme borne haute, d'autre part.

Les bruits de fond ont été réalisés sur des sédiments de rivières et des sols répartis sur les deux ensembles géologiques définis comme Ensembles Géographiques Cohérents (EGC) affleurant sur la zone d'étude :

- le domaine géologique de la zone axiale, majoritairement composé de schistes et situé dans la partie nord-ouest du site d'étude ;
- le domaine géologique des nappes du Minervois constitué de formations carbonatées et détritiques plissées du Paléozoïque situé dans la partie sud-est du site d'étude.

Les deux domaines sont illustrés dans la figure en page suivante.

Page 57

Pour l'arsenic, les lignes de base proposées sont, respectivement à proximité des contacts entre domaines EGC et à leurs cœurs :

- de l'ordre de 50 mg/kg et 120 mg/kg pour le domaine des nappes du Minervois (soit le domaine occupant la majorité de la verse de Ramèle et la moitié Est de la plateforme Marty),
- de 250 mg/kg et 267 mg/kg pour le domaine de la zone axiale (soit le domaine des secteurs de Nartau ainsi qu'une petite partie de la verse de Ramèle et la moitié ouest de la plateforme Marty).

6.2 Milieu Eau

6.2.1 Stratégie d'investigation

La stratégie d'investigation du milieu eau s'attache à présenter et caractériser la dynamique des écoulements de surface et eaux souterraines.

Les eaux sont le principal vecteur et milieu de transfert de pollution et sont à l'origine d'évènements significatifs dans l'historique du secteur d'étude (i.e. crues d'octobre 2018 et de mai 2020). La caractérisation des écoulements d'eaux associée à une analyse de leur qualité permet d'identifier les concentrations en éléments particulaires et dissous et de caractériser les flux de polluants.

A ce titre, les investigations menées se sont concentrées sur :

- une étude hydrogéomorphologique du secteur incluant une analyse géomorphologique et des écoulements de surface dans chacun des bassins versants et sous-bassins versants du Grésillou ;
- le suivi de la pluviométrie sur la totalité d'un cycle hydrologique ;
- un suivi des débits au niveau du Grésillou et de l'Orbiel ainsi que le calcul des débits de pointe théoriques;
- l'étude de la qualité des eaux du Grésillou à un pas mensuel et en régime de crue lors d'évènements pluvieux intenses. La qualité des eaux est appréhendée par la mesure des paramètres physico-chimiques et la réalisation de prélèvements et d'analyses des eaux de surface ;
- les eaux souterraines en lien avec l'observation de pertes d'eau vers des horizons souterrains et de résurgences sont observées le long du Grésillou ainsi que l'étude de la qualité des eaux au niveau du Puits du réservoir minier (Cheminée panneau Sud).

L'acquisition des données par l'analyse cartographique et la surveillance de la qualité des eaux superficielles et du réservoir minier ont pour objectif d'établir une relation entre la pluviométrie et les flux potentiels d'arsenic.

La notion de danger étant liée d'une part à la concentration et d'autre part à la notion de flux, deux approches d'estimation de flux potentiels sont proposées dans la présente étude. La première consiste en l'évaluation des flux chroniques tandis que la seconde évalue le flux aigu potentiel pour chaque source de pollution, primaire et secondaire. La méthodologie de calcul de ces flux chroniques et aigus est précisée ci-après.

6.2.2 *Méthodologie*

6.2.2.1 Analyse géomorphologique du bassin versant hydrographique du Grésillou

L'analyse géomorphologique du bassin versant du Grésillou consiste à analyser les reliefs et les pentes du site. Cette étude a été basée sur les moyens et les outils à disposition, à savoir :

- les données d'observation recueillies lors des missions de terrain (ligne de crêtes, occupation du sol par la végétation, figures d'érosion existantes,);
- la visualisation des cartes IGN mises à disposition par l'Institut National de l'Information Géographique et Forestière ;
- le modèle numérique de terrain mis à disposition par le géoservice IGN sur l'ensemble du bassin versant du Grésillou ;
- la donnée topographique réalisée par US Geological Survey avec une précision de 23 m;
- la donnée topographique réalisée par levée photogrammétrique et LIDAR aéroporté d'Avion Jaune en 2019 au niveau de la verse Ramèle et Nartau avec une précision de 10 cm ;
- les modèles numériques de terrain associés aux données topographiques réalisées par Envisol à l'aide du logiciel QGIS.

L'analyse de ces données permet d'observer les zones favorables à l'érosion au niveau de chaque versant.

6.2.2.2 Délimitation des sous-bassins versants du Grésillou et cartographie des écoulements

La digitalisation des sous-bassins versants hydrographiques et la cartographie des écoulements de surface ont été réalisées à partir des données topographiques disponibles sur le site d'étude des images aériennes orthoréctifiées et des observations de terrain (Cf. § 6.2.2).

Chaque bassin versant hydrographique est délimité par les lignes de crêtes dont les eaux alimentent l'exutoire défini. Un bassin versant se caractérise par 3 continuités :

- une continuité longitudinale de l'amont vers l'aval (ruisseaux vers les rivières) ;
- une continuité latérale, des crêtes vers le fond de la vallée ;
- une continuité verticale, des eaux superficielles vers les eaux souterraines et inversement.

Cette dernière continuité est plus difficile à appréhender et dépend des données sur les zones souterraines disponibles sur le site d'étude. En fonction des observations réalisées sur le site d'étude, une délimitation de bassins versants hydrogéologiques a été proposée.

6.2.2.3 Suivi des précipitations

Le suivi des précipitations utilise les données existantes mesurées par les différentes stations météorologiques et pluviomètres disponibles sur le secteur étudié.

Envisol a également implanté un pluviomètre en bordure du Grésillou (Station du Grésillou) depuis le 26 novembre 2020. Les données sont disponibles depuis le 27 novembre 2020. Cet équipement est resté en place à la fin de la présente étude et est géré par le BRGM.

6.2.2.4 Jaugeages et estimation des débits

Les mesures des vitesses d'eau instantanées et de hauteurs d'eau sont réalisées lors des campagnes mensuelles pour l'année 2020 ainsi que lors du déclenchement des préleveurs automatiques d'eau lors d'évènements pluvieux marquants.

Les mesures de vitesses d'eau et de hauteurs d'eau sont réalisées à l'aide d'une perche et d'un courantomètre le long de la section transversale des cours d'eau. Les vitesses sont mesurées à l'aide d'un moulinet, en même temps que les profondeurs, en un point lorsque la hauteur d'eau est inférieure à 10 cm et plusieurs points, généralement au 1/3 et 2/3 sur la verticale lorsque la hauteur d'eau est supérieure à 10 cm.

La saisie des données de jaugeage obtenues le long de chaque transect (un transect par station) est réalisée dans le logiciel DEPJAU mis à disposition par le BRGM. Il permet de calculer le débit d'écoulement déduit des mesures de vitesses réalisées.

L'estimation des débits combinée aux données recueillies sur la qualité des eaux présentées en § 6.2.2.5 permettent de calculer les flux et donc les transferts existants dans les eaux de surface.

6.2.2.5 Suivi de la qualité des eaux superficielles

Le suivi de la qualité des eaux superficielles est réalisé tout au long de l'année 2020 soit au cours d'un cycle hydrologique complet. Il consiste à analyser les paramètres physicochimiques ainsi qu'à prélever et à caractériser chimiquement les eaux superficielles.

Deux programmes de prélèvements d'eau sont mis en place :

- le premier programme d'investigations concerne le suivi mensuel de la qualité des eaux de surface selon une sélection au sein de 14 stations identifiées ;
- le second programme d'investigations concerne un programme de prélèvements d'échantillons d'eau régulier lors des évènements pluvieux marquants à l'aide de préleveurs automatiques. Pour ce second programme, le déclenchement d'une campagne est décidé lorsqu'un évènement pluvieux d'environ 30 mm ou plus en une journée est identifié à l'aide d'une veille météorologique réalisé sur le site météorologique « météociel » (source : protocole Envisol référencé MO-KC-2010-1b).

Les analyses ont été réalisées par le laboratoire Eurofins, accrédité COFRAC.

6.2.2.6 Etude hydrogéologique - eaux souterraines

Les investigations des eaux souterraines se sont limitées à l'observation des pertes hydrauliques et résurgences le long du Grésillou lors des différentes missions de terrain.

L'observation de la qualité des eaux au niveau du Puits du réservoir minier (Cheminée panneau sud) est également appréhendée. Le programme d'analyse physico-chimique est identique à celui mis en œuvre pour les eaux superficielles.

Un premier CCTP proposant de compléter les connaissanes hydrogéologiques du site d'étude a été réalisé. Celui-ci pourra être repris et amendé en vu d'une meilleure caractérisation de l'hydrogéologie sur le site d'étude.

6.3 Méthodologie d'estimation des flux

Les flux potentiels d'arsenic issus des zones d'intérêt vers le Grésillou ont pour objectifs la hiérarchisation des sources primaires et secondaires potentielles de pollution et l'estimation du flux potentiel de pollution vers l'Orbiel et les enjeux identifiés.

Une source primaire et secondaire très concentrée en arsenic sera hiérarchisée différemment selon que le flux en arsenic dissous et particulaire qui en émane soit fort ou faible. Les estimations des flux provenant des sources reposent sur des hypothèses et des ordres de grandeurs et ne peuvent être considérées comme une donnée quantitative exacte.

Les flux d'arsenic dissous provenant des secteurs sources (Nartau et Ramèle) sont calculés en considérant :

- les concentrations et les débits mesurés au droit du Grésillou. Les stations Mine 1, 1,5 et 2 ont été collectées par Minelis (depuis 2010) et Envisol pour plus de représentativité ;
- en définissant, les périodes d'évenement pluvieux influancant les transferts. Un flux d'arsenic dissous sera calculé pour chaque période.

Le flux d'arsenic dissous provenant de chaque zone d'intêret a été estimé en considérant :

- le potentiel de relarguarge de l'asenic par les essais de lixiviation réalisée sur chaque source primaire ;
- basé sur ce potentiel de relargage, le calcul de la répartition du flux de chaque secteur par source primaire.

Le flux d'arsenic particulaire a été appréhendé qualitativement au travers d'un scoring impliquant les paramètres jugés essentiels selon les résultats de l'étude.

Le chapitre 9 détaille l'ensemble des hypothèses et calculs pris pour l'estimation de ces flux d'arsenic.

6.4 Limites et incertitudes

En raison, des difficultés d'accès (traversés de gués, pentes) et des contraintes de délai, aucune investigation intrusive n'a été réalisée (forages etc..) à ce stade. Le tableau ci-dessous récapitule les zones d'intérêt qui ont été investiguées. Les limites de l'étude y sont également mentionnées.

L'ensemble des zones sources primaires et secondaires a pu être investigué en surface et une étude qualitative des flux des sources primaires vers le Grésillou a pu être réalisée.

Zones d'intérêt (1/2)	Investigué	Limites des investigations réalisées

 Tableau 5. Zones d'intérêt et incertitudes associées aux investigations

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Sources primaires		
Nartau – Matériaux de surface des verses	Oui	Ciblage de zones stratégiques par ENVISOL sur la base de données antérieures (ICF, 2007)
Nartau – Matériaux en profondeur des verses	Non	Absence de connaissances

Zones d'intérêt (2/2)	Investigué	Limites des investigations réalisées
Nartau – Matériaux des galeries et leurs parois	Non	Absence de connaissances
Ancienne zone de résidus de four	Oui	Maillage resserré
Plateforme Marty – Matériaux de recouvrement	Oui	Maillage resserré
Plateforme Marty – Matériaux en profondeur sous les matériaux de recouvrement	Oui	Distribution latérale limitée
Plateforme Marty – Tas de matériaux	Oui	Maillage resserré
Plateforme Marty – Matériaux mis à jour par la crue	Oui	Maillage resserré
Ramèle – Matériaux de surface de la verse	Oui	Ciblage de zones stratégiques par ENVISOL sur la base de données antérieures (ICF, 2007)
Ramèle – Matériaux en profondeur de la verse	Non	Absence de connaissances
Ramèle – Matériaux de stockage des galeries et leurs parois	Non	Absence de connaissances
Verse annexe de Ramèle - Matériaux de surface	Oui	Maillage resserré
Verse annexe de Ramèle - Matériaux en profondeur	Non	Absence de connaissances
Sources secondaires		
Sédiments du Grésillou et de ses affluents (Hort Estiou et Villanière)	Oui	Maillage resserré
Sédiments de l'Orbiel	Oui	Maillage resserré
Voie de transfert	Investigué	Limites des investigations
Transfert par le vent	Oui	Etude poussière réalisée par EVADIES
Eaux superficielles du Grésillou	Oui	Maillage resserré / Estimation qualitative
Eaux souterraines	Oui	Restreint à un seul point d'investigation au niveau du Panneau sud réservoir minier
Eaux superficielles de l'Orbiel	Oui	Amont et aval de la confluence avec le Grésillou / Estimation qualitative

7 PROGRAMMES D'INVESTIGATIONS DES MILIEUX

7.1 Sécurité et environnement

Un plan de prévention a été établi et signé par le personnel d'ENVISOL et le BRGM.

Le personnel intervenant sur le site disposait de l'équipement de sécurité adéquat pour ce type d'intervention (chaussures de sécurité, gants, casque, combinaison de protection, masque FFP3, gilet de sauvetage).

7.2 Aléas de chantier

En l'absence d'eau dans le Grésillou ou à l'inverse en période de crue pour des raisons de sécurité, certains échantillons n'ont pas été prélevés au cours des campagnes de prélèvement d'eau.

Certains échantillons n'ont pas été prélevés au cours d'un programme de prélèvement automatique (*cf.* rapports R-KC-2102a et R-LL-2102-2b) en raison d'un dysfonctionnement technique.

Au cours des périodes de confinement liées à la pandémie covid-19, certains échantillons ont eu des difficultés à être acheminés et/ou pris en charge par les laboratoires (délais allongés).

7.3 Géolocalisation des investigations / relevé de la position des investigations

L'ensemble des investigations a fait l'objet d'un géo-référencement à l'aide du logiciel QGIS et de ses cartes imprimées. Il est à noter qu'aucun GPS ne peut être utilisé sur le site d'étude, qui est en zone blanche.

7.4 Conditionnement des échantillons et transport au laboratoire

Echantillons de sol / roche / sédiments

Les échantillons de sols ont été conditionnés dans des sachets plastiques zippés. Après sélection des échantillons, ils ont été envoyés aux différents laboratoires pour analyse.

Echantillons d'eau

Les échantillons d'eau ont été prélevés dans un flaconnage adapté, fourni par le laboratoire Eurofins, accrédité COFRAC.

Les échantillons ont ensuite été systématiquement conservés à l'abri de la lumière et de la chaleur dès le prélèvement. Ils ont été transférés rapidement par transporteur express vers le laboratoire (sous 24 à 48 heures) en glacières réfrigérées (<5°C). Au cours des campagnes de prélèvements automatiques, les échantillons ont été transféré au plus tard 4 jours après les premiers prélèvements.

Ces échantillons sont ensuite conservés par le laboratoire durant 5 semaines à partir de la date de prélèvement. Passé ce délai, ces derniers sont éliminés dans un centre adapté.

7.5 Investigations des sols

7.5.1 *Réalisation des prélèvements*

La campagne de reconnaissance s'est déroulée du 7 au 11 septembre 2020. La campagne d'investigations s'est déroulée du 26 au 30 octobre 2020. Ces deux campagnes ont été réalisées par des ingénieurs d'ENVISOL.

A l'exception de deux échantillons prélevés sous les matériaux de recouvrement de la plateforme Marty à la tarière manuelle jusqu'à 50 cm, l'intégralité des échantillons a été prélevé en (sub-) surface (0- 20 cm).

Les échantillons de sols ont été tamisés à 2 mm au bureau par un ingénieur d'ENVISOL avant envoi au laboratoire ou mesure au pXRF. Le rebus a permis la constitution des échantillons de blocs. On rappelle que les prélèvements ont été réalisés de telle manière à avoir tous les faciès selon leurs proportions observées.

On rappelle également que des échantillons composites ont été réalisés en fonction des concentrations en arsenic d'échantillons ponctuels. Une attention particulière a été portée sur les masses des échantillons et de leur fraction afin de ne pas sur-représenter un échantillon ou une fraction par rapport à une autre.

Le détail des investigations est présenté dans le chapitre suivant par zone d'intérêt.

7.5.2 Verses de Nartau

7.5.2.1 Zones ciblées

Les zones ciblées considérées au droit des verses de Nartau sont les suivantes :

- <u>aux pieds des verses</u> : des matériaux sont susceptibles d'être remobilisés et entraînés dans le Grésillou. Les zones ciblées sont des zones d'accumulation situées en terminaison de couloirs d'érosion majeurs aux pieds des verses de Nartau;
- <u>en haut des verses</u> afin de cibler les matériaux blanchâtres à verdâtres caractéristiques des hauts de verses ;
- <u>en corps des verses</u> afin de cibler les langues d'éboulement de couleurs différentes caractéristiques d'une grande partie de la verse principale.

7.5.2.2 Investigations

Au total, les points d'investigations réalisés sont les suivants :

- 19 points aux pieds des verses (dont 4 points ont également permis le prélèvement de blocs);
- 11 points en corps de verses ;
- 11 points en haut des verses.

 Client :
 BRGM

 Site :
 Mine de Nartau et Verse de Ramèle (Secteur de Salsigne)

 Titre :
 Localisation des investigations sur la verse de Nartau

Version : a

Figure 13. Carte de localisation des investigations des verses de Nartau

Zone d'investigation • Campagne de reconnaissance Campagne d'investigation

Zone étude Grésillou

Dernière modification : 16/02/21

7.5.2.3 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant.

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	NAR1	х	х								
	Investigations	NAR2	х	Х								
	Investigations	NAR3	х	х								
	Investigations	NAR4	х	х								
	Investigations	NAR5	Х	Х								
	Investigations	NAR6	Х	х								
Nartau - Corps de	Investigations	NAR7	х	х								
	Investigations	NAR8	х	х								
	Investigations	NAR9	х	Х	х							
	Investigations	NAR10	х	х	х							
	Investigations	NAR1-2-3-7-8 (+B)										Х
	Reconnaissance	NAR35	Х	Х								
	SOUS-1	TOTAL	11	11	2	0	0	0	0	0	0	1
	Investigations	NAR11	х	х								
	Investigations	NAR12	х	х								
	Investigations	NAR13	Х	Х	Х							
	Investigations	NAR14	х	х								
	Investigations	NAR15	х	х								
	Investigations	NAR16	х	х								
	Investigations	NAR17	х	Х								
	Investigations	NAR18	х	Х	х							
	Investigations	NAR19	х	х	х							
	Investigations	NAR20	х	Х								
	Investigations	NAR21	х	Х								
	Investigations	NAR22	х	Х								
	Investigations	NAR23	х	Х	х							
Nartau - Pieds de	Investigations	NAR24	х	Х								
verses	Investigations	NAR25	х	Х								
	Investigations	NAR11-12-14-15						Х	Х		Х	
	Investigations	NAR16-17-20					Х	Х	Х		Х	
	Investigations	NAR21-22-24-25					Х	Х	Х		Х	
	Reconnaissance	NAR31	Х	Х								
	Reconnaissance	NAR32	Х	Х								
	Reconnaissance	NAR33	Х	Х								
	Reconnaissance	NAR34	Х	Х								
	Reconnaissance	NAR31B1	Х	Х								
	Reconnaissance	NAR31B2	Х	Х								
	Reconnaissance	NAR31B3	Х	Х								
	Reconnaissance	NAR31B4	Х	Х								
	Investigations	NAR11-25B				-		X	X	-		-
	SOUS-	TOTAL	23	23	4	0	6	4	4	0	3	0
	Investigations	NAR26	X	X								
	Investigations	NAR27	X	X	X							
	Investigations		X	X	X							
	Investigations	NAK29	X	X								
	Investigations	NAR3U	X	X								
	Reconnaissance		X	X								
Nartau - Haut des	Reconnaissance		X	X								
verses	Reconnaissance		X	X								
	Reconnaissance	NAR36R4	×	×								

Tableau 6. Synthèse des investigations et du programme analytique des verses de Nartau

SOUS-TOTAL		11	11	1	0	0	2	2	0	1	1
Reconnaissance	NAR26-30B						Х	Х			
Reconnaissance	NAR27-30 (+B)										х
Reconnaissance	NAR26-29						х	Х		х	
Reconnaissance	NAR36B5	Х	Х								

NARX : échantillon de fraction fine

NARXB : échantillon de fraction grossière (bloc)

NARX Bx : échantillon de fraction grossière (bloc) représentatif d'un faciès observé

(+B) : échantillon composé de la fraction fine + de la fraction grossière

NARY-Z : échantillon composite réalisé à partir de l'échantillon ponctuel Y et de l'échantillon ponctuel Z

BRGM – La Villanière (11)

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Page 66

Référence : R-KC/CCK -2104-1f

7.5.3 Bâtiments de Nartau

7.5.3.1 Zones ciblées

Les zones ciblées considérées sont les suivantes :

- les bâtiments de Nartau : Les activités passées liées à ces bâtiments demeurant inconnues, les sols situés de part et d'autre ainsi qu'au droit de ces bâtiments ont été investigués ;
- les matériaux résiduels stockés.

7.5.3.2 Investigations

Au total,10 prélèvements ont été réalisés au droit de cette zone d'intérêt au cours de la campagne d'investigation. Ils sont localisés sur la carte suivante.

Figure 14. Carte de localisation des investigations des bâtiments de Nartau

7.5.3.3 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant.

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	BAT1	Х	х								
	Investigations	BAT2	х	Х								
	Investigations	BAT3	х	Х								
	Investigations	BAT4	х	Х								
Bâtiments de	Investigations	BAT5	х	х								
Nartau	Investigations	BAT6	х	Х								
	Investigations	BAT7	х	Х								
	Investigations	BAT8	х	Х	х							
	Investigations	BAT9	х	х	х							
	Investigations	BAT10	х	Х								
TOTAL			10	10	2	0	0	0	0	0	0	0

Tableau 7. Synthèse des investigations et du programme analytique des bâtiments de Nartau

7.5.4 **Zone de résidus de four**

7.5.4.1 Zones ciblées

Les zones ciblées considérées sont les suivantes :

- le tas de matériaux en talus près du chemin d'accès (RES9 et RES10)
 ;
- une masse qui a été partiellement été emportée lors de la crue de 2018 (RES4 à RES8) ;
- dans le lit majeur du Grésillou au droit du sol qui soutenait les matériaux emportés par la crue de 2018 (RES1 à RES3).

7.5.4.2 Investigations

Au total, 10 prélèvements ont été réalisés au droit de cette zone d'intérêt au cours de la campagne d'investigations. Ils sont localisés sur la carte suivante.

- Zone d'investigation
- Campagne d'investigation (Echantillon prélevé) Zone étude Grésillou

Figure 15. Carte de localisation des investigations de la zone des résidus de four (RES4 et RES5 sont confondus car sur le même axe vertical ; la zone d'intérêt a été délimitée conformément à l'etude de MINELIS en 2015)

7.5.4.3 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant.

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	RES1	х	х								
	Investigations	RES2	х	х								
	Investigations	RES3	х	х			х	х	х		х	
	Investigations	RES4	х	х								
	Investigations	RES5	х	х	х							
Zone des résidus	Investigations	RES6	х	х								
de four	Investigations	RES7	х	х								
	Investigations	RES8	х	х								
	Investigations	RES9	х	х								
	Investigations	RES10	х	х	х							
	Investigations	RES1-4-6-8 (+B)										Х
	Investigations	RES1-10B						х	Х			
TOTAL			10	10	2	0	3	2	2	0	1	1

Tableau 8. Synthèse des investigations et programme analytique de la zone des résidus de four

RESX : échantillon de fraction fine

RESXB : échantillon de fraction grossière (bloc)

(+B) : échantillon composé de la fraction fine + de la fraction grossière

RESY-Z : échantillon composite réalisé à partir de l'échantillon ponctuel Y et de l'échantillon ponctuel Z

7.5.5 Plateforme Marty

7.5.5.1 Zones ciblées

Les zones ciblées considérées sont les suivantes :

- le muret mis à nu par la crue de mai 2020 ;
- les matériaux de recouvrement ;
- les matériaux en profondeur situés sous les matériaux de recouvrement à 50 cm de profondeur. Les résidus de four provenant de l'ancienne zone des résidus de four et actuellement stockés sous les matériaux de recouvrement ne sont pas inclus ici. Ils ont en éffet déjà fait l'objet de caracétrisation par MINELIS en 2015 ;
- les tas de matériaux observés.

7.5.5.2 Investigations

Les points d'investigations réalisés au droit de cette zone d'intérêt au cours des campagnes de reconnaissance et d'investigations sont :

- 5 points au droit du muret mis à nu par la crue de mai 2020 ;
- 18 points des matériaux de recouvrement ;
- 2 points des matériaux en profondeur (50 cm) situés sous les matériaux de recouvrement ;
- 16 points des tas de matériaux.

Figure 16. Carte de localisation des investigations de la plateforme Marty

7.5.5.3 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant.

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	MAR1	х	Х	Х							
	Investigations	MAR2	х	Х								
	Investigations	MAR3	х	х								
Plateforme Marty -	Investigations	MAR4	х	х								
Résidus du muret	Investigations	MAR5	х	Х								
Zone d'intérêts Plateforme Marty - Résidus du muret mis à nu par la crue Plateforme Marty - Sous couverture Plateforme Marty - Tas de résidus	Investigations	MAR2-3					х	Х	х		х	
	Investigations	MAR4-5 (+B)										Х
	Investigations	Productional 	х									
	SOUS-TO	DTAL	5	5	1	0	3	2	2	0	1	1
	Investigations	MAR12	X	X			-			X		x
Plateforme Marty -	Investigations	MAR13	×	x						x		x
sous couverture	SOUS-T		2	2	0	0	0	0	0	2	0	2
	Investigations		2	2 V	0	U	0	U	Ū	2	0	2
	Investigations	MARO	×	^ 								
	Investigations	MAR7	×	×								
	Investigations	MAR8	X	X								
	Investigations	MAR9	X	X								
	Investigations	MAR10	Х	Х								
	Investigations	MAR11	Х	Х								
	Investigations	MAR28	Х	Х								
	Investigations	MAR6-7-8-9-10- 11-28						Х	х		Х	
Plateforme Marty - Tas de résidus	Investigations	MAR6-7-8-9-10- 11-28 (+ B)										Х
	Investigations	MAR6-11B						Х	Х			
	Reconnaissance	MAR31		Х								
	Reconnaissance	MAR31B		Х								
	Reconnaissance	MAR32B		х								
	Reconnaissance	MAR33		х								
	Reconnaissance	MAR33B		Х								
	Reconnaissance	MAR34		х								
	Reconnaissance	MAR35B		х								
	Reconnaissance	MAR36		х								
	Reconnaissance	MAR36B		х								
Plateforme Marty - Résidus du muret mis à nu par la crue Plateforme Marty - sous couverture Plateforme Marty - Tas de résidus Plateforme Marty - Natériaux de recouvrement	SOUS-TO	OTAL	7	16	0	0	0	2	2	0	1	1
	Investigations	MAR14	x	x								
	Investigations	MAR15	x	x								
	Investigations	MAR16	×	v								
Plateforme Marty Résidus du muret mis à nu par la crue Plateforme Marty sous couverture Plateforme Marty Tas de résidus	Investigations	MAR10	×	×								
	Investigations		×	~								
			Λ	л У								
	investigations		X	X								
	Investigations		X	X								
	Investigations	MAR21	Х	X								
	Investigations	MAR22	Х	Х								
Plateforme Marty	Investigations	MAR23	Х	Х	Х							
Matériaux de	Investigations	MAR24	Х	Х								
recouvrement	Investigations	MAR25	Х	Х								
	Investigations	MAR26	Х	Х								
	Investigations	MAR27	Х	Х								
	Investigations	MAR29	Х	Х								
	Investigations	MAR14-15-18-19- 20-21-22-24-25- 26-27 (+B)								х		х
	Reconnaissance	MAR37		х								
	Reconnaissance	MAR38		х								
	Reconnaissance	MAR39		Х								
	SOUS-TO	DTAL	15	18	1	0	0	0	0	1	0	1

 Tableau 9. Synthèse des investigations et programme analytique de la plateforme Marty

MARX : échantillon de fraction fine

MARXB : échantillon de fraction grossière (bloc)

(+B) : échantillon composé de la fraction fine + de la fraction grossière

MARY-Z : échantillon composite réalisé à partir de l'échantillon ponctuel Y et de l'échantillon ponctuel Z

BRGM – La Villanière (11)

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Page 72

Référence : R-KC/CCK -2104-1f

7.5.6 Verse de Ramèle

7.5.6.1 Zones ciblées

Les zones ciblées considérées sont les suivantes :

- la zone d'impact mise en évidence lors de l'étude d'ICF en 2007, située à proximité de l'ancienne cheminée de la fonderie ;
- la zone d'impact mise en évidence lors de l'étude d'ICF en 2007 en corps de verse, située au-dessus de nombreux couloirs de ravinement se dirigeant vers le Grésillou ;
- en bas de verse, dans une zone située en contrebas de l'ancienne zone de stockage des scories ;
- en pied de verse Ramèle en contrebas des anciens bassins de décantation au niveau de la berge de la rive droite du Grésillou.

Il est à noter que de gros blocs (> 1 m3) sont présents en bas des talus et que ceux-ci n'ont pas été échantillonnés ni analysés au pXRF.

7.5.6.2 Investigations

Les prélèvements réalisés sont les suivants :

- 6 points de prélèvement au droit de l'impact à proximité de l'ancienne cheminée ;
- 5 points de prélèvement au droit de la zone d'impact en corps de verses ;
- 13 points de prélèvement en bas de la verse ;
- 5 points de prélèvement au pied de verse.

Page 74 Référence : R-KC/CCK -2104-1f

7.5.6.3 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant.

Tableau 10. Synthèse des investigations de la verse de Ramèle

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Reconnaissance	RAM1	х	х								
	Investigations	RAM1bis	х	х				х	х		х	
	Investigations	RAM2	Х	х								
Ramèle - Zone	Investigations	RAM3	Х	х	х							
impact cheminée	Investigations	RAM4	Х	х								
	Investigations	RAM5	Х	х								
	Investigations	RAM4-5 (+B)					х			х		х
	SOUS	TOTAL	6	6	1	0	3	1	1	1	1	1
	Investigations	RAM6	х	х	х							
	Investigations	RAM7	Х	х								
Ramèle - Zone	Investigations	RAM8	Х	х								
impact corps de	Investigations	RAM9	Х	х								
verse	Investigations	RAM10	Х	Х								
	Investigations	RAM6-7-10 (+B)		х			х			х		х
	SOUS	TOTAL	5	6	1	0	3	0	0	1	0	1
	Investigations	RAM16	Х	х								
	Investigations	RAM17	Х	х								
	Investigations	RAM18	Х	х								
	Investigations	RAM19	Х	Х								
	Investigations	RAM20	Х	Х								
	Investigations	RAM16-18-19 (+B)		х			х			х		х
	Reconnaissance	RAM21B1	Х	х								
Ramèle - Bas de	Reconnaissance	RAM21B2	Х	х								
Verse	Reconnaissance	RAM21B3	Х	х								
	Reconnaissance	RAM21B4	Х	Х								
	Reconnaissance	RAM21B5	Х	х								
	Reconnaissance	RAM21B6	Х	х								
	Reconnaissance	RAM21B7	Х	х								
	Reconnaissance	RAM21B8	Х	Х								
	SOUS	TOTAL	13	14	0	0	3	0	0	1	0	1
	Investigations	PAL1	х	х	х							
-	Investigations	PAL2	Х	х	х							
	Investigations	PAL3	х	х								
Ramèle - Pied de	Investigations	PAL4	Х	х								
verse	Investigations	PAL5	Х	х				х	х		х	
	Investigations	PAL3-4					Х	Х	х		Х	
	SOUS	TOTAL	5	5	2	0	3	2	2	0	2	0

RAMX : échantillon de fraction fine

RAMXB : échantillon de fraction grossière (bloc)

RAMX Bx : échantillon de fraction grossière (bloc) représentatif d'un faciès observé

(+B) : échantillon composé de la fraction fine + de la fraction grossière

RAMY-Z : échantillon composite réalisé à partir de l'échantillon ponctuel Y et de l'échantillon ponctuel Z

BRGM – La Villanière (11)

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Page 75

Référence : R-KC/CCK -2104-1f

7.5.7 Verse annexe de Ramèle

7.5.7.1 Zones ciblées

Les investigations ont été réparties sur l'ensemble du tas observé.

7.5.7.2 Investigations

Au total, 5 prélèvements ont été réalisés au droit de cette zone d'intérêt. Ils sont localisés sur la carte suivante.

Figure 18. Carte de localisation des investigations de la verse annexe de Ramèle

7.5.7.3 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant.

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	RAM11	х	х								
	Investigations	RAM12	х	х								
Verse annexe de Ramèle	Investigations	RAM13	х	х								
hamele	Investigations	RAM14	х	х								
	Investigations	RAM15	х	х	х							
		5	5	1	0	0	0	0	0	0	0	

Tableau 11. Synthèse des investigations de la verse annexe de Ramèle

BRGM – La Villanière (11)

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

RAMX : échantillon de fraction fine

7.5.8 *Paléosédiments*

7.5.8.1 Zones ciblées

Deux zones ont été identifiées en ce qui concerne les paléosédiments :

- un banc de sédiments végétalisé situé entre deux bras du Grésillou dans son lit mineur, correspondant à des dépôts en régime hydrologique normal du Grésillou ;
- une zone d'inondation située dans le lit majeur du Grésillou composée de terrasses formées en régime de crue.

Les prélèvements au droit du banc d'accumulation sont réalisés à plusieurs profondeurs afin d'intercepter plusieurs horizons. Au total, 5 horizons jusqu'à 50 cm de profondeur ont été prélevés. De la même façon, en ce qui concerne la zone d'inondation, plusieurs terrasses ont été investiguées.

7.5.8.2 Investigations

Au total, 10 prélèvements ont été réalisés au droit de cette zone d'intérêt au cours de la campagne d'investigations. Ils sont localisés sur la carte suivante.

Page 78

7.5.8.3 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau en page suivante.

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	PAL6	х	х								
	Investigations	PAL7	х	х	х							
Paléosédiments -	Investigations	PAL8	х	Х								
Terasse	Investigations	PAL9	х	х								
	Investigations	PAL10	х	х								
	Investigations	PAL6-8						Х	Х		х	
	SOUS-TOT	AL.	5	5	1	0	0	1	1	0	1	0
	Investigations	PAL11	х	х	х							
	Investigations	PAL12	х	х								
Paléosédiements - Banc	Investigations	PAL13	х	х								
build	Investigations	PAL14	х	Х								
	Investigations	PAL15	х	х	х							
SOUS-TOTAL		AL.	5	5	2	0	0	0	0	0	0	0
TOTAL			10	10	3	0	0	1	1	0	1	0

Tableau 12. Synthèse des investigations des paléo-sédiments

PALX : échantillon de fraction fine

7.6 Investigations des sédiments Grésillou, de ses affluents, et de l'Orbiel (A220)

7.6.1 *Réalisation des prélèvements*

Pour les 3 types de campagne, les prélèvements ont consisté, autant que possible, au prélèvement de sédiments fraichement déposés. Les prélèvements ont été réalisés par un ingénieur d'ENVISOL.

Les spécificités de chaque campagne sont décrites ci-dessous.

7.6.2 Campagne mensuelle

7.6.2.1 Investigations

Les sédiments ont été prélevés lors de campagnes mensuelles des eaux superficielles de janvier 2020 à août 2020. Aucun échantillon n'a été prélevé dans l'Hort Estiou ou le ruisseau de la Villanière. Le tableau ci-dessous récapitule les dates et les stations de prélèvement :

- lors de la première campagne, 11 stations ont été échantillonnés. A la suite de cette campagne, le programme de prélèvement a été allégé en supprimant les stations Grésillou A et E, apportant peu d'information par rapport aux stations à proximité ;
- aucune campagne de prélèvement n'a pu être réalisé en mars, suite au confinement lié à la pandémie covid-19;

- une campagne complémentaire a été réalisée en mai après la crue pour évaluer ses conséquences. Une sélection restreinte de station a été réalisée pour cette campagne,
- lors des campagnes, certains prélèvements de sédiments n'ont pu être réalisés pour plusieurs raisons : absence de sédiments fins et récents ou point jugé dangereux.

# Echantillon	29/01/2020	27/02/2020	14/04/2020	05/05/2020	14/05/2020 (post Crue)	10/06/2020	08/07/2020
Mine 1	х	х	х	х	х	х	Absence de sédiments fins récents
Grésillou A	Х						
Grésillou B	Х	Х	Х	Х	Х	Х	Х
Mine 1,5	х	х	х	х	Point jugé trop dangereux dû à la crue du Grésillou	х	Absence de sédiments fins récents
Grésillou C	х	х	х	х	Point jugé trop dangereux dû à la crue du Grésillou	х	Х
Mine 2	Х	Х	Х	Х	Х	Х	Х
Grésillou D	х	x	х	х	Point jugé trop dangereux dû à la crue du Grésillou – accessible par une marche dans le lit du Grésillou	Х	Absence de sédiments
Grésillou E	х						
Grésillou F	х	Pas de sédiments fins et récents	Pas de sédiment fin et récent disponible	Pas de sédiment fin et récent disponible	Х	Absence de sédiments	Absence de sédiments
Grésillou G	х	х	Pas de sédiment fin et récent disponible	Pas de sédiment fin et récent disponible	Х	х	Absence de sédiments fins récents
Orbiel Amont	х	Х	Х	х	Point jugé trop dangereux dû au débit de l'Orbiel	х	Х
'otal 11		8	7	7	5	8	4

Tableau 13. Synthèse des prélèvements de sédiments des sédiments au cours des campagnesmensuelles

7.6.2.2 Programme analytique

Un programme analytique complet a été réalisée lors de la première campagne puis un allégement a été effectué par la suite. Le programme analytique concernant toutes campagnes est le suivant :

- les éléments traces métalliques : Al, As, Bi, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sb, W, Zn, Fe, Ag, S, total, SO4, CO3 ;
- les cations majeurs : Ca, Mg, Na, K.

Les méthodes et le laboratoire d'analyse sont précisés dans le chapitre 6.1.3 stratégies d'échantillonnages et d'analyses.

7.6.3 Campagne de reconnaissance

7.6.3.1 Investigations

La campagne de reconnaissance s'est déroulée du 7 au 11 septembre 2020.

Lors de la campagne de reconnaissance, les sédiments ont été tamisés par les ingénieurs d'ENVISOL à 1 et 2 mm afin de considérer les fractions : 0-1 mm ; 0-2 mm et > 2 mm.

Les zones ciblées se situent tout au long du Grésillou, de l'amont de Nartau à la confluence entre le Grésillou et l'Orbiel, en passant par ses affluents que sont l'Hort Estiou et le ruisseau de la Villanière.

34 points de prélèvement ont été positionnés le long du Grésillou lors de la campagne de reconnaissance :

1) de manière resserrée au niveau des zones d'intérêt avec la présence d'un prélèvement en amont et aval de chaque zone d'intérêt

2) de manière plus distante après les zones d'intérêt.

De plus, un prélèvement a été effectué dans l'Hort Estiou et un dans le ruisseau de la Villanière.

2 prélèvements ont également été réalisés au sein de l'Hort Estiou et de la Villanière.

Aucun échantillon n'a été prélevé dans l'Orbiel.

La phase de reconnaissance a permis ensuite de sélectionner 7 points de prélèvements lors de la campagne d'investigations.

La localisation des points de prélèvement est présentée dans la Figure 21.

7.6.3.2 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant. Seuls des mesures pXRF ont été réalisées lors de cette campagne.

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	GRE1	х	х			х	х	Х		Х	
	Investigations	GRE7	х	х			Х	х	Х		х	
	Investigations	Hort Estiou	х	х			Х	х	Х		х	
	Investigations	GRE22	х	х			Х	х	Х		х	
	Investigations	GRE29	х	х			Х	х	Х		х	
	Investigations	Villannière	х	х			х	х	х		х	
	Investigations	GRE35	х	х			Х	х	х		х	
	Reconnaissance	GRE01	х			Х						
	Reconnaissance	GRE02	х			Х						
	Reconnaissance	GRE03	х			Х						
	Reconnaissance	GRE04	х			Х						
	Reconnaissance	GRE05	х			Х						
	Reconnaissance	GRE06	х			Х						
	Reconnaissance	GRE07	х			х						
	Reconnaissance	GRE08	х			х						
	Reconnaissance	GRE09	х			х						
	Reconnaissance	GRE010	х			Х						
	Reconnaissance	GRE011	х			Х						
	Reconnaissance	GRE012	х			Х						
	Reconnaissance	GRE013	х			х						
Sédiments du	Reconnaissance	GRE014	х			Х						
Grésillou et de ses	Reconnaissance	GRE015	х			Х						
affluents	Reconnaissance	GRE016	х			х						
	Reconnaissance	GRE017	х			х						
	Reconnaissance	GRE018	х			х						
	Reconnaissance	GRE019	х			х						
	Reconnaissance	GRE020	х			х						
	Reconnaissance	GRE021	х			х						
	Reconnaissance	GRE022	х			Х						
	Reconnaissance	GRE023	х			Х						
	Reconnaissance	GRE024	х			Х						
	Reconnaissance	GRE025	х			Х						
	Reconnaissance	GRE026	х			х						
	Reconnaissance	GRE027	х			х						
	Reconnaissance	GRE028	х			х						
	Reconnaissance	GRE029	х			х						
	Reconnaissance	GRE030	х			х						
	Reconnaissance	GRE032	х			Х						
	Reconnaissance	GRE033	х			х						
	Reconnaissance	GRE034	х			х						
	Reconnaissance	GRE035	х			х						
	Reconnaissance	0Hort Estiou	х			х						
	Reconnaissance	0Villanière	х			х						
	TOTAL		43	7	0	102	21	7	7	0	7	0

Tableau 14. Synthèse des prélèvement et analyses des sédiments au cours de la campagne de reconnaissance

7.6.4 Campagne d'investigations

7.6.4.1 Investigations

La campagne d'investigation s'est déroulée du 26 au 30 octobre 2020.

Lors de la phase d'investigation, les sédiments ont été prélevés et tamisés à 2 mm par les ingénieurs d'ENVISOL. Le tamisage pour les analyses granulochimiques a été réalisé par le laboratoire.

Sur la base des données de la campagne de reconnaissance, 5 points de prélèvements ont été sélectionnés le long de Grésillou en considérant les aspects suivants : 1) préservation des points les plus concentrées et des sauts de concentrations 2) suppression des points redondant en termes géochimique. Le point de prélèvement dans l'Hort Estiou et dans le ruisseau de la Villanière ont été conservés

Aucun échantillon n'a été prélevé dans l'Orbiel

La localisation des points de prélèvement est présentée dans la Figure 21.

7.6.4.2 Programme analytique

L'ensemble des prélèvements et du programme analytique associé est détaillé dans le tableau suivant.

Tableau 15. Synthèse des prélèvement et analyses des sédiments au cours de la campagne
d'investigation

Zone d'intérêts	Campagne	# Echantillon	Prélèvement	Mesure au pXRF	ICP pour calibration	pXRF (granolo- chimie)	ICP (granulo- chimie)	ICP*	DRX	Lixiviation étendue (Mg, Al, S, Ca, Fe, Bi)	Extraction séquentielle	ISDI
	Investigations	GRE1	х	х			х	х	х		х	
	Investigations	GRE7	х	х			х	х	х		х	
Sédiments du	Investigations	Hort Estiou	х	х			х	х	х		х	
Grésillou et de ses	Investigations	GRE22	х	х			х	х	х		Х	
affluents	Investigations	GRE29	х	х			х	х	х		Х	
	Investigations	Villannière	х	х			х	Х	х		х	
	Investigations	GRE35	x	х			х	х	х		х	
	7	7	0	0	21	7	7	0	7	0		

Légende :

Campagne mensuelle

- Sédiments_Gresillou Campagne de reconnaissance (Echantillon prélevé)
- Campagne d'investigation (Echantillon prélevé) Zone étude Grésillou L'Orbiel

Figure 21. Carte de localisation des investigations des sédiments du Grésillou et ses affluents

Dernière modification : 31/03/21

7.7 Investigations hydro-géomorphologiques

7.7.1 Investigation géomorphologique, délimitation des sousbassins versants du Grésillou et cartographie des écoulements

Les observations géomorphologiques et des écoulements de surface permettent de définir les surfaces de drainage et donc de délimiter les différents bassins versants et sous-bassins versants hydrologiques du site d'étude. La délimitation de ces unités hydrologiques permettra de déterminer la dynamique d'écoulement de surface et des débits de pointe caractéristiques.

La digitalisation des bassins versants et sous-bassins versants des eaux de surface est réalisée :

- pour chaque source de pollution définie précédemment dont les exutoires se situent :
 - au pied des verses de Nartau,
 - au niveau des sorties d'eaux superficielles des différents bâtiments de Nartau,
 - en contrebas de la zone des résidus de four,
 - au pied de la verse Ramèle,
 - au pied de la verse annexe de Ramèle,
 - en contrebas de la plateforme Marty,
 - à la jonction du Grésillou et de l'Orbiel pour délimiter le bassin versant du Grésillou,
 - à la jonction de L'Hort Estiou et du Grésillou pour délimiter les surfaces de drainage de l'Hort Estiou,
 - à la jonction du Grésillou et du ruisseau de la Villanière pour délimiter les surfaces de drainage du ruisseau de la Villanière,
- pour 10 des12 stations des eaux superficielles investiguées :
 - Mine 1,
 - Grésillou A,
 - Grésillou B,
 - Mine 1.5,
 - Grésillou C ou Grésillou C buse (à l'entrée de la partie busée dans le lit du Grésillou)
 - Grésillou C surface (au-dessus de la partie busée)
 - Mine 2 ou mine 2 bus (en sortie de la buse dans le lit du Grésillou)
 - Mine 2 surface (au-dessus de la partie busée)
 - Grésillou D,
 - Grésillou E,
 - Grésillou F,
 - Grésillou G.

Les stations Orbiel amont et Orbiel aval situées respectivement en amont et aval de la confluence du ruisseau du Grésillou et de l'Orbiel constituent des références pour l'analyse de la qualité des eaux tout comme le puits du réservoir minier (Cheminée Panneau Sud). Les calculs de débits ne sont pas réalisés pour ces stations investiguées.

Une attention particulière a été portée aux écoulements de surface au niveau des zones dénudées ou présentant une végétation éparse où le ruissellement y est moins contrôlé. Ces zones constituent des surfaces de drainage plus actives qu'au niveau de zones végétalisées.

7.7.2 Suivi des précipitations

Le suivi de la pluviométrie s'est déroulé sur l'ensemble de l'année 2020, au cours d'un cycle hydrologique complet.

Les données recueillies sont :

- celles au niveau de la station de l'Artus relevées par la société Minélis pour l'ensemble de l'année 2020 ;
- celles au niveau de la station du Grésillou installées et relevées par la société Envisol à la suite de l'implantation du pluviomètre depuis le 26 novembre 2020 ;
- celles de la station de Montréal de Météo France pour l'année 2020 ;
- celles de la station de Carcassonne-Salvaza de Météo France pour l'année 2020. Les données de la station de Carcassonne-Salvaza seront reprises lors de calculs de débits de référence en utilisant les coefficients de Montana calculés par Matéo France. Ces coefficients ne sont pas disponibles pour les autres stations étudiées.

Les stations sont localisées sur la figure ci-dessous et précisées dans le tableau ci-dessous.

Figure 22 : Localisation des stations pluviométriques

Nom de la station pluviométrique	Réception des données	X (Lambert 93)	Y (Lambert 93)
Station du Grésillou implantée et suivi par Envisol	Données journalières recueillies tous les mois lors des campagnes mensuelles	643919	6235226
Station de l'Artus suivie par Minélis	Données journalières	630152	6233780
Station de Montréal (MétéoFrance)	Données mensuelles utilisées	648189	6249997
Station de Carcassonne-Salvaza (MétéoFrance) Données mensuelles utilisées		650891	6245653

Tableau 16 : Stations	pluviométriques	d'intérêt pour	le suivi des	précipitations

Pluviomètre station du Grésillou installé par ENVISOL

Le pluviomètre installé est un Auget PL2 basculant 0,2 mm (Hydreka). Il a été installé dans une pairie dégagée à proximité de Mine 2 (Figure 22 et Figure 23)

Les données sont relevées sur le terrain mensuellement depuis le 26 novembre 2020. Chaque évènement pluvieux de plus de 2 mm est enregistré.

Figure 23. Illustration de l'emplacement du pluviomètre installé par Envisol

7.7.3 Jaugeages et estimation des débits

Les mesures de jaugeages et l'estimation des débits ont été réalisées lors des campagnes de suivi de la qualité des eaux superficielles au niveau 7 points parmi les 12 stations décrites cidessous. Seule la campagne de mars 2020 n'a pas été réalisée en raison de la crise sanitaire liée au covid19.

Les 7 points ont été sélectionnés en fonction de l'intérêt et de la faisabilité des mesures. Parmi les 12 stations :

- 10 sont situées sur le Grésillou ;
- 2 sont situées sur l'Orbiel en amont et en aval de la confluence de l'Orbiel avec le Grésillou. Les débits mesurés sur l'Orbiel ont été comparés aux données disponibles sur la plateforme Vigicrues mise à disposition par le Service d'information sur le risque de crues des principaux cours d'eau en France.

Ces stations sont localisées sur la Figure 20.

Deux mesures de jaugeages distinctes, en surface au-dessus de la buse et au niveau de la buse, ont été réalisées au niveau des stations Grésillou C et Mine 2.

Une synthèse des mesures recueillies sont précisées dans le tableau ci-dessous.

29012020 26102020 21022020 01032020 11082020 Station de 14042020 2020 mesure / Date 0505 100 de suivi Pas asse Jaugeage Jaugeage Jaugeage Jaugeage Jaugeage Pas assez Pas assez Pas assez Pas assez Mine 1 réalisé réalisé réalisé réalisé réalisé d'eau d'eau d'eau d'eau d'eau Jaugeage Station retirée Grésillou A Station retirée du suivi réalisé du suivi Jaugeage Pas asse Jaugeage Jaugeage Jaugeage Pas assez Pas assez Pas assez Pas assez Jaugeage Grésillou B réalisé réalisé réalisé réalisé réalisé d'eau d'eau d'eau d'eau d'eau Jaugeage Jaugeage Jaugeage Jaugeage Pas assez Jaugeage Mine 1.5 Asséché Asséché Asséché Asséché réalisé réalisé réalisé réalisé d'eau réalisé Grésillou C Jaugeage Jaugeage Jaugeage Jaugeage Asséché Asséché Asséché Asséché Asséché Asséche réalisé surface réalisé réalisé réalisé Grésillou C -Jaugeage Jaugeage Jaugeage Jaugeage Pas assez Pas asse Jaugeage Trop dangereux Asséché Asséché buse réalisé réalisé réalisé réalisé réalisé d'eau d'eau Mine 2 – Pas assez Pas assez Pas assez Pas assez Crise sanitaire Asséché Asséché Asséché Asséché Asséché Asséche surface d'eau d'eau d'eau d'eau Covid-19 Jaugeage Jaugeage Jaugeage Jaugeage Jaugeage Pas assez Pas assez Pas assez Mine 2 Asséché Asséche réalisé réalisé réalisé réalisé réalisé d'eau d'eau d'eau Grésillou D Non pertinent Non pertinent Non pertinent Non pertinent Non pertinent Asséché Asséché Asséché Asséché Asséché Station retirée Grésillou E Non pertinent Station retirée du suivi du suivi Grésillou F Non pertinent Asséché Asséché Pas assez Grésillou G Pas assez d'eau Non pertinent d'eau Jaugea Orbiel amont Trop dangereux Trop dangereux réalisé Jaugeag Orbiel aval Trop dangereux Trop dangereux réalisé

Tableau 17 : Mesures de jaugeages réalisées le long du Grésillou au cours des campagnes de suivi mensuel (2020)

	291212020
θZ	Jaugeage réalisé
θZ	Jaugeage réalisé
é	Pas assez d'eau
é	Asséché
θZ	Trop d'obstacle
é	Pas assez d'eau
é	Jaugeage réalisé
é	Jaugeage réalisé
e	Trop dangereux
e	Trop dangereux

7.8 Investigations des eaux superficielles – Qualité de l'eau (A220)

Les campagnes de suivi de la qualité des eaux superficielles ont été réalisées mensuellement sur l'année 2020. Seule la campagne de mars 2020 n'a pas été réalisée en raison de la crise sanitaire liée au covid19.

7.8.1 *Prélèvements des eaux superficielles – suivi mensuel*

7.8.1.1 Investigations

Les campagnes mensuelles de suivi de la qualité des eaux superficielles ont été réalisées au niveau des 12 stations définies dans les chapitres précédents (7.7.1). Une synthèse des prélèvements réalisés est précisée dans le tableau ci-dessous.

Deux prélèvements distincts ont été réalisée, en surface au-dessus de la buse et au niveau de la buse au niveau des stations Grésillou C et Mine 2.

Les prélèvements ont été réalisés par un ingénieur d'ENVISOL. Avant chaque prélèvement, les paramètres physico-chimiques suivant ont été mesurée : le pH, la température, la conductivité, le potentiel redox, l'oxygène dissous. Les mesures des paramètres physico-chimiques ont été réalisées à l'aide d'une sonde immergée effectuant des mesures in situ préalablement étalonnée.

Deux mesures distinctes des paramètres physico-chimiques sont réalisées, en surface audessus de la buse et au niveau de la buse au niveau des stations Grésillou C et Mine 2.

Station de mesure / Date de suivi	29612020	21102020	01030020	14848020	05050020	19866222	080112020	11880020	28090020	25/10/2020	251112020	29112020
Mine 1	1 Envisol	1 Envisol		1 Envisol	2 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol
Grésillou A	1 Envisol	Station retirée du suivi					Stati	on retirée du	suivi			
Grésillou B	1 Envisol	1 Envisol		1 Envisol	2 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol
Mine 1.5	1 Envisol	1 Envisol		1 Envisol	1 Envisol	1 Envisol	1 Envisol	Station asséchée	Station asséchée	Station asséchée	Station asséchée	1 Envisol
Grésillou C - surface	1 Envisol	1 Envisol		1 Envisol	1 Envisol	Station asséchée	Station asséchée	Station asséchée	Station asséchée	Station asséchée	Station asséchée	1 Envisol
Grésillou C - buse	1 Envisol	1 Envisol		1 Envisol	1 Envisol	1 Envisol	1 Envisol	Station asséchée	Station asséchée	1 Envisol	1 Envisol	1 Envisol
Mine 2 – surface	1 Envisol	1 Envisol	Crise	1 Envisol	1 Envisol	Station asséchée	Station asséchée	Station asséchée	Station asséchée	Station asséchée	Station asséchée	1 Envisol
Mine 2 - buse	1 Envisol	1 Envisol	Covid-19	1 Envisol	2 Envisol	1 Envisol	1 Envisol	Station asséchée	1 Envisol	1 Envisol	Station asséchée	1 Envisol
Grésillou D	1 Envisol	1 Envisol		1 Envisol	1 Envisol	1 Envisol	Station asséchée	Station asséchée	Station asséchée	Station asséchée	Station asséchée	1 Envisol
Grésillou E	1 Envisol	Station retirée du suivi					Stati	on retirée du	suivi			
Grésillou F	1 Envisol	Station asséchée		Station asséchée	1 Envisol	Station asséchée						
Grésillou G	1 Envisol	1 Envisol		1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol
Orbiel amont	1 Envisol	1 Envisol		1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol
Orbiel aval	1 Envisol	1 Envisol		1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol

Tableau 18 : Prélèvements d'eau superficielle réalisés lors des campagnes mensuelles de 2020

7.8.1.2 Protocole d'échantillonnage

Les prélèvements des échantillons d'eaux ont été réalisés à l'aide d'un bécher relié à une perche, directement dans le Grésillou.

Deux protocoles d'échantillonnages ont été réalisés :

- 1) Le protocole donné par le laboratoire Eurofins et suivi jusqu'en octobre 2020 avec acidification au laboratoire pour les traces de métaux dissous et une filtration sur site.
- 2) Le protocole suivi entre octobre 2020 et décembre 2020 intègre une acidification sur site.

Le détail des protocoles est renseigné dans la section 6.2.2.5.

Aucune différence n'a été observée entre les deux protocoles en octobre 2020. L'ensemble des données a donc été traité conjointement.

7.8.1.3 Programme analytique

Le programme d'analyses sur les eaux superficielles a été le suivant :

- éléments traces (métaux et métalloïdes) sous leur forme dissoute uniquement entre janvier et juin 2020 puis sous forme dissoute et particulaire entre juillet et décembre 2020 : Aluminium (Al), Antimoine (Sb), Arsenic (As), Bismuth (Bi), Cadmium (Cd), Chrome (Cr), Cobalt (Co), Cuivre (Cu), Fer (Fe), Manganèse (Mn), Nickel (Ni), Plomb (Pb) et Zinc (Zn) ;
- cations majeurs : Calcium (Ca), magnésium (Mg), sodium (Na) et potassium (K) ;
- anions majeurs: Sulfates (SO₄²⁻), Chlorures (Cl⁻), carbonates (CO₃⁻) et hydrogénocarbonates (HCO₃⁻).
- le carbone organique dissous (COD) et les matières en suspension (MES) sont mesurés dans les échantillons d'eau prélevés lors des campagnes mensuelles uniquement.

L'ensemble des analyses ont été réalisées par le laboratoire Eurofins, accrédité COFRAC.

7.8.2 *Préleveurs automatiques – suivi d'un évènement pluvieux*

7.8.2.1 Implantation des préleveurs automatiques

Trois préleveurs automatiques ont été implantés le 26 novembre 2020 aux points stratégiques identifiés constituant des sources potentielles d'alimentation en arsenic :

- en amont des verses : Mine 1,
- en aval de la verse Nartau et en amont de la verse Ramèle : Mine 1.5,
- en aval des verses : Mine 2.

Ces positionnements stratégiques ont pour objectif d'illustrer les apports particulaires respectifs de chacun des secteurs Nartau et Ramèle au cours d'évènement pluvieux marquant c'est-à-dire un évènement de 30 mm de pluie en une journée.

Le positionnement des préleveurs automatiques est illustré dans la figure ci-dessous. Ils sont :

- installés hors de portée des eaux du Grésillou et de préférence en zone ombragée,
- fixés et stabilisés via des supports fixes (arbres).

Figure 24 : Plan de localisation des 3 préleveurs automatiques au droit de Mine 1, Mine 1,5 et Mine 2.

7.8.2.2 Campagne d'échantillonnage

Deux campagnes de prélèvements automatiques ont été déclenchés :

- entre le 14 et le 16 décembre 2020 ;
- entre le 30 janvier 2021 et le 02 février 2021. Un défaut dans la programmation des préleveurs a empêché certains prélèvements. 5 au lieu de 24 échantillons ont finalement été prélevés.

Les programmes d'échantillonnages sont présentés en pages suivantes.

Tableau 19. Caractéristiques des programmes de prélèvement automatiques des eaux superficielles duGrésillou (Mine 1, Mine 1,5, Mine 2)

	Programme d'échantillonna	ge
Date de la campagne de prélèvement	Du 14/12/2020	Du 30/01/2021 au 02/02/2021
Type de programme	Lancé le 14/12/2020	Programmé le 29/01/2021
Date	14/12/2020	30/01/2021
Heure de début d'échantillonnage	16h	10h
Date	16/12/2020	02/02/2021
Heure de fin d'échantillonnage	16h	7h
Fréquence de prélèvement	Toutes les 6 heures	Toutes les 3 heures
Nombre de prélèvements par préleveur	17	24
Volume des flacons	1 000 ml	1 000 ml
Volume de l'échantillon	400 ml	800 ml
Distribution	1 flacon par échantillon et 1 échantillon par flacon	1 flacon par échantillon et 1 échantillon par flacon
	8 échantillons par stations	5 échantillons pour la station Mine 2
Nombre d'échantillons analysés par		5 échantillons pour la station Mine 1.5
stations		8 échantillons pour la station Mine 1
Jaugeage	En début et fin de campagne	En début et fin de campagne
Mesure des paramètres physico- chimiques	En début et fin de campagne	En début et fin de campagne

laur			Pluviométrie (mm)	Prélèvement		ent	Pluviométrie cumulée				Prélèvement		ent	Plu
	Jour	Heure	Pluviométrie (mm)	Mine 1	Mine 1,5	Mine 2	(mm)	Jour	Heure	Pluviométrie (mm)	Mine 1	Mine 1,5	Mine 2	
		1	0,2				0,2		1	00				
	-	2	0,0				0,2		2	00				_
	-	3	0,0				0,2		3					-
	-	5	0,0				0,2		4					-
		6	1.6				1.8		6	00				-
		7	1,8				3,6		7	00				
		8	0,8				4,4		8	0,0				
		9	0,8				5,2		9	0,0				
	-	10	0,2				5,4		10	0,0				
	-	11	0,2				5,6		11	0,2				4
	10/12/2020	12	1 4				5,0	14/12/2020	12	0,0				1
	-	14	3,6				10.6		14	0,0				-
	-	15	1,4				12,0		15	0,0				
		16	0,2				12,2		16	0,0	1	1	1	
		17	0,4				12,6		17	0,0				
		18	0,0				12,6		18	0,0				
	-	19	0,0				12,6		19	0,0				-
	-	20	0.0				12,0		20	0,0				-
	-	22	0,2				12,8		22	0,0	2	2	2	
	-	23	0,0				12,8		23	0,2				
		24	0,0				12,8		24	0,0				
		1	0,0				12,8		1	0,0				
	-	2	0,0				12,8		2	0,0				-
	-	4	0,0				12,8		4	0,0	3	3	3	
	-	5	0.0				12,8		5	0.0		J	5	4
		6	1,6				14,4		6	0,0				
		7	3,6				18,0		7	0,0				
		8	2,8				20,8		8	0,0				
	-	9	1,6				22,4		9	0,2				
	-	10	1,4				23,8		10	0,0	4	4	4	4
	-	11	0,0				24,4		11	0,0				+
	11/12/2020	13	0.0				24,4	15/12/2020	13	0.2				-
	-	14	0,0				24,4		14	0,2				1
		15	0,6				25,0		15	0,0				
		16	0,8				25,8		16	0,0	5	5	5	
	-	1/	1,8				27,6		1/	0,0				-
	-	18	0,8				28,4		18					-
		20	1.6				30.6		20	0,0				-
	-	21	1,6				32,2		21	0,0				
		22	0,2				32,4		22	0,0	6	6	6	
		23	0,4				32,8		23	0,0				
		24	0,0				32,8		24	0,0				4
	-	2	1,4				34,2		2					-
		3	2,8				39,6		3	0,0				-
		4	2,8				42,4		4	0,0	7	7	7	
		5	2,4				44,8		5	0,0				
		6	2,8				47,6		6	0,0				
	-	7	1,8				49,4		7	0,0				
	-	8	2,0				51,4		8	0,0				-
		9 10	1,4				52,8		9 10	0,0	8	8	8	
	-	10	0,2				54,0		11	0,0		0	U	4
	12/12/2020	12	0,4				54,6	10/10/2020	12	0,0				
	12/12/2020	13	0,6				55,2	10/12/2020	13	0,0				
		14	0,2				55,4		14	0,0				-
		15	0,0				55,4		15	0,0	-		0	
		16	0,0				55,4		16	U,U 0,0	9	9	9	
		18	0,2				55,0		18	0,0				
		19	0.0				55.8		19	0,0				
		20	0,0				55,8		20	0,0				
		21	0,8				56,6		21	0,0				
		22	0,4				57,0		22	0,0				-
		23	0,4				57,4		23	0,0				
l		24	0,0		1		57,4		24	0,0	1			J

Figure 25. Programme d'échantillonnage des préleveurs automatiques en décembre 2020

viométrie cumulée						
(mm)						
57,4						
57,4						
57,4						
57,4						
57.4						
57,4						
57,4						
57,4						
57,4						
57,6						
57.8						
57,8						
57,8						
57,8						
57,8						
57,8						
57.8						
57,8						
57,8						
58,0						
58,0						
58,0						
58,0						
58,0						
58,0						
58,0						
58,0						
58.2						
58,2						
58,2						
58,2						
58,4						
58,6						
58,6						
58,6						
58,6						
58,6						
58,6						
58.6						
58,6						
58,6						
58,6						
58,6						
58,6						
58.6						
58,6						
58,6						
58,6						
58,6						
58.6						
58,6						
58,6						
58,6						
58,6						
58,6						
58,8						
58,8						
58,8						
58,8						
58,8						
58,8						

7.8.2.3 Programme analytique

Le programme d'analyses sur les eaux superficielles a été le suivant :

- éléments traces (métaux et métalloïdes) sous leur forme dissoute et particulaire : Aluminium (Al), Antimoine (Sb), Arsenic (As), Bismuth (Bi), Cadmium (Cd), Chrome (Cr), Cobalt (Co), Cuivre (Cu), Fer (Fe), Manganèse (Mn), Nickel (Ni), Plomb (Pb) et Zinc (Zn);
- cations majeurs : Calcium (Ca), magnésium (Mg), sodium (Na) et potassium (K) ;
- anions majeurs : Sulfates (SO₄²⁻), Chlorures (Cl⁻), carbonates (CO₃⁻) et hydrogénocarbonates (HCO₃⁻).

L'ensemble des analyses ont été réalisées par le laboratoire Eurofins, accrédité COFRAC.

Les MES n'ont pas été systématiquement mesurées du fait d'une trop faible quantité d'eau échantillonées pour réaliser l'ensemble des analyses.

7.9 Investigations hydrogéologiques

7.9.1 Cartographie des éléments hydrogéologiques

Les observations des marqueurs hydrogéologiques, à savoir la présence de pertes hydrauliques et de possibles résurgences le long du Grésillou se sont déroulées tout au long des campagnes mensuelles de suivi de la qualité des eaux de surface.

Une attention particulière des marqueurs de mouvements d'eaux souterraines a été portée en période de basses eaux (étiage) lors de la campagne de septembre 2020.

Des mesures de pendages lithologiques et des failles pouvant indiquer des zones d'écoulements préférentiels des eaux souterraines ont été réalisées par les géologues d'Envisol.

7.9.2 Investigations des eaux souterraines – Qualité des eaux (A210)

Seules les eaux du Puits du réservoir minier (Panneau sud) ont été investiguées durant l'année 2020. Une synthèse des prélèvements réalisés est précisée dans le tableau ci-dessous.

Les prélèvements ont été réalisés par un ingénieur d'ENVISOL. Avant chaque prélèvement, une purge de quelques minutes est réalisée afin d'obtenir des eaux claires, ensuite les paramètres physico-chimiques suivants sont mesurés : le pH, la température, la conductivité, le potentiel redox, l'oxygène dissous. Les mesures des paramètres physico-chimiques ont été réalisées à l'aide d'une sonde immergée effectuant des mesures in situ préalablement étalonnée. Les prélèvements ont été réalisés directement en sortie de tuyau.

Tableau 20 : Investigations de la qualité des eaux réalisées sur le Puits Réservoir minier (Panneau sud)en 2020

Station de mesure du Puits Réservoir minier (Panneau sud)	·prv20	ten.?	D marsi	A avril	o nairl	o pin?	o inter	a soit?	o sept?	o otri	o novil	o discrit	0
Mesures physico- chimiques				x	x		x	x	x	x	x	x	
Prélèvement d'eau souterraine				1 Envisol	1 Envisol		1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	1 Envisol	

8 CARACTERISATION DES ZONES D'INTERET

8.1 Verses de Nartau

8.1.1 *Géomorphologie*

La verse de Nartau et ses verses secondaires s'étendent sur une surface de 9 200 m² au niveau d'un versant abrupt dont les pentes naturelles, avant mise en place de la verse, sont comprises entre 25° et 40° (cf. Figure 27). Les sols dénudés représentent environ 75% de la surface du bassin versant.

La verse principale de Nartau présente une pente intégratrice de 38°. Les zones de plus grandes pentes se retrouvent au niveau du corps de verse et en pied de verse. Les pentes peuvent y atteindre 45° en contrebas des zones indurées formant une ferricrête. La partie sommitale de la verse présente des pentes plus irrégulières variant de 18° à 48° au niveau des zones de déversement des matériaux (haut de verse).

La verse principale de Nartau s'étend entre les cotes 404 m NGF et 319 m NGF au sein d'un bassin versant d'altitude maximale de 433 m NGF et minimale de 316 m NGF et de pente moyenne de 27° (50%).

Figure 27 : Cartographie des pentes du bassin versant de la verse principale de Nartau

Les verses secondaires de Nartau présentent des pentes moyennes de 35° avec quelques zones de replats formant des ferricrêtes pour la verse secondaire la plus à l'est du bassin versant (cf. Figure 28). Les sols dénudés représentent 50% de la surface du bassin versant.

Les verses secondaires se situent entre les cotes 317 m NGF et 344 m NGF au sein d'un bassin versant d'altitude maximale de 404 m NGF et minimale de 315 m NGF et de pente moyenne de 25° (47%).

Figure 28 : Cartographie des pentes du bassin versant des verses secondaires de Nartau

8.1.2 Analyse structurale

Les mesures de pendage réalisées aux abords de la verse de Nartau sont présentées ci-après.

Les structures présentes aux abords de Nartau sont principalement d'orientation (cf. Figure 29) :

- E-W, NW-SE à pendages sud et sud-ouest compris entre 40° et 60° et situés au niveau de la verse et au sud de la verse de Nartau en lien avec la tectonique souple hercynienne ;
- ces structures sont recoupées par une tectonique cassante NNW-SSE (N130 à N150) à pendages plus marqués de 80° au niveau de la verse de Nartau et dans le lit du Grésillou;
- une structure orientée N-S de pendage de 43° vers l'est traverse le lit du Grésillou en pied de la verse de Nartau. Ce décrochement est associé aux structures retrouvées au niveau des failles de Ramèle mentionnées dans l'étude (ANTEA, 2003).

Figure 29 : Mesures structurales aux abords de la verse de Nartau, des verses secondaires et des bâtiments de Nartau

La verse de Nartau ne présente pas de signes d'instabilités en grand. En effet, aucun glissement de terrain majeur n'a été observé depuis sa création. De plus, le réseau de galeries existant dans le voisinage (au nombre de 6) constitue un réseau de drainage souterrain proche (les verses ne sont pas sur les galeries mais à côté) permettant de limiter les risques de mise sous pression de la verse qui pourrait être liés à des circulations d'eau en sub-surface. Des gabions ont par ailleurs été mis en place en 2015 en pied de verse et restaurés en 2019 à l'issue de la crue de 2018.

Une étude d'Aléas a été réalisée par Géoderis en 2011 (Figure 39). Un risque de glissement/ravinement localisé est toutefois présent en lien avec la topographie de Nartau (pente supérieure à 30 °) lors d'aléas climatiques intenses. En effet, les matériaux de la verse se sont aujourd'hui naturellement mis en place dans une condition stable. Dans le cas d'évènements pluvieux majeurs, le ruissellement et l'infiltration de l'eau a pour effet de modifier les conditions de stabilité naturelle et créent ainsi des glissements jusqu'en pied de verse. Cela a été le cas en 2018, lors d'évènements pluvieux violents, environ 70 tonnes de matériaux ont glissé en pied de verse. Ces matériaux ont été enlevés en pied de Nartau en octobre 2019 et envoyés vers l'ISDD d'Occitanis (81).

8.1.3 Dynamique des écoulements de surface

Les bassins versants et les écoulements de surface associés de la verse de Nartau et des verses secondaires de Nartau sont présentés en Figure 30 et Figure 31.

Les dépôts de matériaux sous forme de décharge minière dans le versant ont peu modifié les écoulements naturels à l'exception de l'ancienne piste menant au haut de verse. Cette dernière a dévié une partie des écoulements de surface vers la végétation en amont des verses secondaires de Nartau.

 Client:
 BRGM
 Dernière mo

 Site:
 Mine de Nartau et Verse de Ramèle (Secteur de Salsigne)
 Dernière mo

 Titre:
 Cartographie des écoulements de surface sur le sous-bassin versant de la verse de Nartau
 Version : a

Figure 30 : Cartographie des écoulements de surface sur le bassin versant de la verse de Nartau

Figure 31 : Cartographie des écoulements de surface sur le bassin versant des verses secondaires de Nartau

8.1.4 Dynamique des écoulements de sub-surface

Au niveau du site de Nartau, la présence du socle schisteux imperméable et sa topographie pentue tendent vers l'hypothèse d'écoulements de sub-surface dus aux eaux d'infiltration à travers les couches superficielles altérées schisteuses dont une part importante d'eaux rejoint le Grésillou (ICF, 2007). L'épaisseur de stériles miniers laisse supposer de faibles circulations avec une part majeure de ruissellement. Les suintements recensés en bas de verse proviennent probablement de ces circulations de subsurface et des éventuelles retenues constituées par les gabions (utilisés pour la stabilisation). A noter qu'il existe des circulations d'eau dans l'encaissant au travers des grès et schistes avec une migration vers les couches plus profondes en fonction de la fracturation et de la stratification.

8.1.5 Caractérisation lithologique macroscopique

Les zones ciblées sont les suivantes : le pied de verse, le corps de verse et le haut de verse des verses de Nartau. La lithologie macroscopique est décrite pour chaque zone ciblée.

Corps de verse

Les matériaux investigués du corps de la verse principale de Nartau sont composés en moyenne de 70% de graves et blocs (50 à 87%) et 30% de matrice fine (< 2mm). Les blocs sont composés de schistes blancs à beiges plus ou moins oxydés, de matériaux carbonisés ainsi que de quartz (i.e. fragment de veine de quartz et/ou quartzite). La matrice fine globalement est grise à brune et correspond à des limons et à des sables schisteux.

Les matériaux sont en majorité boulants mais ils forment également des ferricrêtes en particulier dans la partie sud de la verse principale. Une partie des verses secondaires est entièrement induré et forme un massif subvertical.

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
NAR1	249	801	76	sable schisteux beige	schiste blanc/beige ±oxydé, qtz
NAR2	324	685	68	limon beige/jaune, sable schisteux	schiste blanc/beige ±oxydé, qtz
NAR3	356	562	61	limon gris/jaune	schiste blanc/beige ±oxydé, qtz
NAR4	372	780	68	limon gris/jaune	schiste blanc/beige ±oxydé, qtz
NAR5	364	828	69	limon brun/beige	schiste ± oxydé
NAR6	329	782	70	limon brun/beige	schiste ± oxydé
NAR7	118	801	87	sable schisteux limoneux gris	schiste ± oxydé
NAR8	137	817	86	sable schisteux marron	schiste ± oxydé
NAR9	448	445	50	limon brun/rouille	schiste ± oxydé
NAR10	286	515	64	sable schisteux limoneux brun/rouille	schiste ± oxydé

Tableau 21. Caractéristiques physiques et lithologiques des échantillons du corps de verse de Nartau

Figure 32. Photographie d'échantillons représentatifs du corps de verse de Nartau ; en haut : ferricrête sur les verse principale et secondaire ; au milieu : échantillons représentatifs à l'affleurement ; en bas : échantillons représentatifs tamisés.

Pied de verse

Les matériaux investigués aux pieds des verses de Nartau sont composés en moyenne de 73% de graves et blocs (53 à 85%) et 27% de matrice fine (< 2mm) boulants. Ils sont situés dans des zones d'accumulation au pied de couloir d'érosion ou directement dans la zone de ravinement. Les blocs (2-20 cm environ) sont composés de schistes blancs à beiges plus ou moins oxydés, de matériaux très riches en oxydes, de quartz (i.e. fragment de veine de quartz et/ou quartzite), de fragments de ferricrête contenant des fractions fines et grossières ou enfin de minerai altéré de couleur verte/blanche riche en scorodite. La matrice fine globalement est grise à brune et correspond à des limons et à des sables schisteux.

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
NAR11	494	2230	82	sable schisteux beige/brun	hardpan, schiste jaune, schiste minéralisé (qtz, oxydes)
NAR12	447	1608	78	sable schisteux beige/brun	hardpan, schiste jaune, schiste minéralisé (qtz, oxydes)
NAR13	843	2045	71	sable schisteux beige/brun	hardpan, schiste jaune, schiste minéralisé (qtz, oxydes, scorodite)
NAR14	627	2364	79	sable schisteux beige/brun	hardpan, schiste jaune, schiste minéralisé (qtz, oxydes)
NAR15	585	1943	77	sable schisteux beige	hardpan, schiste jaune, schiste minéralisé (qtz, oxydes)
NAR16	1800	2053	53	sable schisteux brun/jaune	schiste jaune ± minéralisé (oxydes, qtz)
NAR17	580	730	56	sable schisteux brun/jaune	schiste jaune
NAR18	543	1230	69	sable schisteux brun	schiste ± minéralisé (oxydes, qtz)
NAR19	362	1275	78	sable schisteux brun/jaune	schiste ± minéralisé (oxydes, qtz)
NAR20	469	1224	72	sable schisteux brun/jaune	hardpan, schiste minéralisé (scorodite, oxydes)
NAR21	658	1078	62	limon rouille	schiste jaune ± oxydé
NAR22	431	1518	78	limon rouille	schiste jaune ± oxydé
NAR23	753	1553	67	limon rouille	schiste jaune ± oxydé
NAR24	571	2374	81	limon brun clair	schiste jaune/brun
NAR25	227	1284	85	limon brun clair	schiste jaune/brun ±oxydé

Tableau 22. Caractéristiques physiques et lithologiques des échantillons des pieds de verses de Nartau

Figure 33. Photographies des matériaux de pied de verse de Nartau ; en haut : trois zones principalement investiguées ; au milieu : échantillons tamisés représentatifs de chaque zone ; en bas : blocs des pieds de verses.

Haut de verse

Les matériaux investigués en haut des verses de Nartau sont composés en moyenne de 65% de graves et blocs (40 à 75%) et 45% de matrice fine (< 2mm) en majorité indurés sous forme de ferricrête. Les blocs, en moyenne de 1 à 5 cm, sont composés de schistes blancs à beiges plus ou moins oxydés, de matériaux très riches en oxydes, de quartz (i.e. fragment de veine de quartz et/ou quartzite), de fragments de ferricrête contenant des fractions fines et grossière ou enfin de minerai altéré de couleur verte/blanche riche en scorodite. La matrice fine est blanche à verte, de la couleur de la scorodite, induré sous forme de ferricrête. Les amas de matériaux blancs sont situés à proximité des ouvertures de galerie donnant au jour.

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
NAR26	296	773	72	sable blanc/vert	qtz, schiste blanc, hardpan
NAR27	250	750	75	sable blanc/vert	qtz, schiste blanc, hardpan
NAR28	375	906	71	sable blanc/vert	qtz, schiste blanc, hardpan
NAR29	328	660	67	sable blanc/vert	qtz, schiste blanc, hardpan
NAR30	600	400	40	sable blanc/vert	qtz, schiste blanc, hardpan

Tableau 23. Caractéristiques physiques et lithologiques des échantillons du haut des verses de Nartau

Figure 34. Photographie d'échantillons des matériaux du haut des verses de Nartau

Globalement, il semblerait que tous les matériaux de la verse aient une origine commune. Les plus gros blocs sont observés en pied de verse probablement dû à un effet gravitaire. La matrice fine blanche riche en scorodite est préférentiellement observée à proximité des ouvertures de galerie.

Les ferricrêtes ont la particularité d'être dur et résistant à l'érosion. Les zones de ferricrête ont localisé sur la base des observations terrains et des strates caractéristiques visibles sur photo aérienne (Figure 36).

8.1.6 *Caractérisation chimique et granulochimique*

8.1.6.1 Chimie globale

Les résultats sont présentés dans le Tableau 24, le Tableau 25 et la Figure 35.

Dans la Figure 35 les médianes des concentrations en métaux en corps, pied et haut de verses, sont normalisées par la concentration moyenne de l'ensemble du site d'étude, définie comme la moyenne des médianes de chaque zone d'intérêt. Cela permet d'illustrer des appauvrissements et des enrichissements relatifs par rapport à l'ensemble du site d'étude. De plus, des valeurs de bruits de fond réalisés sur le domaine géologique de la zone axiale y sont ajoutées à des fins de comparaison. Les données provenant de deux méthodes analytiques différentes (matériaux investigués : pXRF ; bruit de fond : ICP), la comparaison n'est réalisée que sur les éléments dont les corrélations entre les deux méthodes ont été réalisées et sont bonnes.

Globalement, et comparativement aux matériaux investigués sur l'ensemble du site d'étude, les matériaux des verses de Nartau sont caractérisés par :

- de faibles teneurs en Si, Al, Ca et Mn, particulièrement pour les matériaux du haut des verses ;
- de faibles teneurs en Ni, Cu, Zn et Pb, dont les moyennes sont < 100 mg/kg ;
- de fortes teneurs en S, Fe, As, Se, Sb et Bi, particulièrement pour les matériaux du haut des verses :
 - les teneurs en S varient de 0,11% à 6,34%, avec une médiane de 1,00 et 1,14% pour les matériaux du corps et des pieds de verses, respectivement, et seulement de 0,46% pour les matériaux du haut des verses ;
 - les teneurs en Fe varient de 1,75% à 48,37%, avec une médiane de 9,78 et 7,57% pour les matériaux du corps et des pieds de verses, respectivement, et de 17,54% pour les matériaux du haut des verses ;
 - les teneurs en As varient de 0,20 à 24,08% (517 mg/kg à 30,12% pour les blocs), avec une médiane de 3,16 et 1,89% pour les matériaux du corps et des pieds de verses, respectivement, et de 14,43% pour les matériaux du haut des verses ;
 - les teneurs en Se et Sb ne dépassent pas 313 mg/kg et sont maximales au sein de matériaux du haut des verses ;
 - les teneurs en Bi varient de 8 mg/kg (mesure pXRF ponctuelle sur un bloc) à 1574 mg/kg, avec une médiane de 133 et 48 mg/kg pour les matériaux du corps et des pieds de verses, respectivement, et de 646 mg/kg pour les matériaux du haut des verses.

Comparativement au bruit de fond, les matériaux des verses de Nartau sont :

- enrichis en S, Fe, As et Bi ;
- pauvres en Ca, Ni, Zn ;
- dans la même gamme de concentration pour les éléments suivants : Mn, Cu et Pb.

Figure 35. Spectre multi élémentaire des concentration normalisées à l'ensemble du site d'étude pour les matériaux des verses de Nartau (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)

Tableau 24. Chimie des matériaux des verses de Nartau (résultats pXRF corrigés en mg/kg)

) échantillon	Zone d'intérêts	Mg	AI	Si	s	к	Ca	Cr	Mn	Fe	Co*	Ni	Cu	Zn	As	Se	Mo*	Ag*	Cd*	Sn	Sb	Ва
AR1	Nartau - Corps de verses	49 698	82 873	147 170	10 720	24 227	110	131	57	78 793	128	10	21	23	16 967	4	4	78	16	57	32	1 002
AR2	Nartau - Corps de verses	56 947	87 629	158 715	10 800	27 498	181	99	59	96 281	134	17	50	46	31 675	23	4	80	14	46	75	883
AR3	Nartau - Corps de verses	103 961	49 015	87 811	4 616	14 182	26	111	65	101 559	130	10	54	20	73 748	58	4	104	12	42	101	737
AR4	Nartau - Corps de verses	115 219	53 943	91 086	5 115	14 375	26	106	131	120 877	136	8	76	39	70 885	49	4	16	10	66	110	891
AR5	Nartau - Corps de verses	58 924	86 270	156 868	11 819	25 616	30	135	60	97 805	136	10	46	32	34 142	22	4	84	14	36	26	1 015
AR6	Nartau - Corps de verses	55 745	79 929	143 991	8 410	25 146	28	81	79	75 855	126	10	25	17	24 803	26	4	78	16	35	30	820
AR7	Nartau - Corps de verses	68 737	69 506	126 777	8 809	19 458	143	118	86	99 864	138	10	54	35	31 546	27	4	88	14	48	80	1 144
AR8	Nartau - Corps de verses	51 919	60 983	118 472	10 136	18 263	72	95	75	84 033	130	10	28	24	23 031	26	4	88	14	44	67	819
AR9	Nartau - Corps de verses	79 958	45 757	100 530	8 679	14 707	26	96	85	111 535	315	20	55	45	62 428	54	8	282	26	39	108	1 122
AR10	Nartau - Corps de verses	64 /69	41 105	89 4 / 8	10 000	14 531	24	112	646	101 130	309	21	49	32	57 440	56	8	128	2/	38	110	973
AR35	Nartau - Corps de verses	29 440	65 135	122 608	3/ 822	24 729	3 442	63	95	97334	69	15	61	46	13 465	/	2	36	8	59	60	15/1
lediane	Nartau - Corps de verses	58 924	65 135	122 608	0.184	19 458	30	105	79	97 805	134	10	50	32	316/5	26	4	84	21	24	75	9/3
	Nartau - Pieds de verses	40 307	60 274	172 5 4 7	9 104	21 250	200	107	570	51 569	108	10	25	10	20 422	14	4	70	16	24	24	1 0 2 1
AR12	Nartau - Pieds de verses	62978	69 274	172 547	0.200	23 031	200	00	400	63 880	120	10	25	10	20 422	14	4	80	10	52	32	1 047
AR15	Nartau - Pieds de verses	12 882	68 4 26	132 570	12/180	25 102	27	124	433	59.847	116	10	25	13	19 673	8	10	74	16	31	04 8/	1 1/2
AR14	Nartau - Pieds de verses	42 002 81 65/	60 4 67	133 727	9 5 2 8	16 505	20	1124	420	72 771	122	10	20	10	36 254	55	4	80	10	51	65	1 142
AR15	Nartau - Pieds de verses	35 061	55 294	103 673	25 212	20 874	277	116	79	85 933	132	10	31	40	17 107	4	4	78	16	49	54	1 363
AR17	Nartau - Pieds de verses	23 435	48 874	92 269	21 320	17 646	322	119	67	73 301	130	10	42	34	10 996	10	4	72	16	34	32	1 170
AR18	Nartau - Pieds de verses	31 667	41 969	87 640	21 026	18 116	561	99	71	77 695	302	22	41	32	17 451	9	10	165	37	51	62	1 352
AR19	Nartau - Pieds de verses	26 365	49 567	92 695	25.036	19 016	320	105	100	89 370	316	20	53	37	14 832	11	8	101	36	41	54	1 408
AR20	Nartau - Pieds de verses	50 785	48 340	97 081	23 784	17 970	370	130	89	95 098	138	10	51	40	24 308	14	4	78	14	38	59	1 308
AR21	Nartau - Pieds de verses	14 873	76 558	149 898	2 787	16 355	30	104	237	87 866	136	23	151	43	2 964	2	4	74	27	22	32	677
AR22	Nartau - Pieds de verses	20 061	78 575	138 843	3 460	17 078	346	114	337	76 585	128	29	130	51	7 367	4	4	72	16	22	32	689
AR23	Nartau - Pieds de verses	12 260	82 410	153 766	1 126	15 584	62	91	308	55 570	261	35	159	57	2 036	6	13	159	31	32	62	653
AR24	Nartau - Pieds de verses	21 527	92 489	159 771	3 744	20 371	675	100	840	72 976	126	47	135	68	6 6 1 6	5	4	72	18	24	32	882
AR25	Nartau - Pieds de verses	28 093	99 077	174 370	5 048	22 715	417	80	561	86 248	134	38	116	64	10 936	7	4	10	16	22	30	884
AR31B1	Nartau - Pieds de verses	5 009	31 418	81 427	59 879	19 950	16	86	281	39 599	51	5	5	9	517	1	7	32	12	36	51	649
AR31B1	Nartau - Pieds de verses	8 814	28 713	86 270	36 816	24 285	16	73	300	34 878	47	12	14	4	2 463	2	7	29	12	16	23	866
AR31B1	Nartau - Pieds de verses	19 826	39 941	171 366	18 455	32 030	223	174	204	34 777	50	17	19	12	2 610	2	4	29	12	16	23	1 589
AR31B2	Nartau - Pieds de verses	131 419	20 671	46 621	4 293	3 003	279	158	683	237 886	68	4	135	5	299 489	287	1	160	3	4	231	177
AR31B2	Nartau - Pieds de verses	136 881	22 778	39 159	25 457	3 613	252	202	625	245 142	71	4	202	51	291 008	276	1	137	3	103	136	1 301
AR31B2	Nartau - Pieds de verses	93 590	12 601	16 321	5 695	1 519	24	217	1 414	232 729	78	5	70	56	301 228	283	1	38	3	124	6	182
AR31B3	Nartau - Pieds de verses	27 387	35 021	109 568	4 110	19 727	17	88	394	63 434	67	5	83	7	52 810	57	2	49	8	46	88	733
AR31B3	Nartau - Pieds de verses	19 630	34 941	105 108	7 895	21 547	17	32	55	57 512	69	5	43	35	18 298	3	3	7	10	54	65	620
AR31B3	Nartau - Pieds de verses	78 970	24 549	68 692	8 251	8 886	224	100	477	113 946	69	4	24	27	75 429	48	2	52	5	49	119	669
AR31B4	Nartau - Pieds de verses	26 036	27 055	146 268	4 173	10 432	70	31	116	156 536	88	5	158	4	33 255	48	2	62	6	43	69	211
AR31B4	Nartau - Pieds de verses	21 026	23 305	47 479	27 297	8 3 1 8	373	63	118	244 121	95	4	955	4	36 185	17	2	52	5	101	11	187
AR31B4	Nartau - Pieds de verses	10 441	13 864	32 551	34 350	2 670	323	30	869	483 684	94	3	300	390	6 141	1	1	75	4	87	7	1 040
AR32	Nartau - Pieds de verses	70 033	67 434	133 419	11 611	21 624	14	127	209	59 600	58	5	19	12	20 048	11	2	38	9	35	69	923
AR33	Nartau - Pieds de verses	56 884	63 319	123 937	15 690	21 542	14	119	60	74 846	64	5	34	23	26 834	3	2	42	8	43	64	1 270
AR34	Nartau - Pieds de verses	108 488	23 261	46 995	18 956	6 445	288	178	639	195 444	74	4	155	5	177 507	218	1	17	4	79	7	169
1édiane	Nartau - Pieds de verses	29 880	48 607	107 338	11 836	18 566	223	105	304	75 716	102	10	47	25	18 986	10	4	72	13	39	54	904
AR26	Nartau - Haut de verse	198 630	27 534	53 842	7 972	5 138	28	147	750	177 924	130	8	133	10	204 148	241	2	190	6	10	243	444
AR27	Nartau - Haut de verse	189 829	20 197	43 035	63 419	2 949	268	144	676	205 494	136	8	108	12	240 866	312	2	226	6	8	246	352
AR28	Nartau - Haut de verse	184 907	32 597	64 263	4 650	6 287	340	167	1 789	175 419	303	19	135	24	205 523	195	6	428	15	74	224	399
AR29	Nartau - Haut de verse	212 941	27 272	49 074	9 1 4 0	5 364	24	145	662	141 326	128	8	67	10	143 440	190	2	168	8	58	156	596
AR30	Nartau - Haut de verse	191 /9/	24 101	49 596	3 992	4 /13	26	115	75	161 289	130	8	123	10	183 505	249	2	188	6	68	183	408
AR36	Nartau - Haut de verse	107 862	34 912	8/134	3 288	9916	145	107	332	108 172	62	4	133	23	102 258	119	1	1/	5	57	165	714
AR36B1	Nartau - Haut de verse	79 739	50 731	114 238	4 /14	29 427	19	104	265	17469	36	5	1/	9	4 542	2	8	31	13	18	25	796
AR36B2	Nartau - Haut de verse	77 042	19 854	8/0/6	8 567	2770	133	113	861	218 813	81	5	260	81	263 067	269	1	116	4	5	313	214
	Nartau - Haut de verse	100.025	26 996	33 400	3 403	2 1 1 2	1 202	25	702	97 895	76	4	226	121	10 333	14 E1	2 1	32	2	49	94	242
	Nartau Haut de verse	106 4925	20 600	57 694	2 665	16 907	21	25	225	457 199	70	2	230	4/0	20.092	1	1	00 90	3	00	250	245
Angobo Aédiane	Nartau - Haut de verse	107 862	27 272	53 842	4 650	5 138	133	113	676	175 /10	86	5	133	23	1/13 //0	190	2	116	4	57	183	408
Aavimum	Vorso do Nartau	212 0/1	00.077	174 270	62 /10	22 020	2 4 4 2	217	2 205	1/3 419	216	17	055	1 256	201 220	212	12	110	27	124	212	1 5 90
ládiane	Verse de Nartau	57/56	17 0/18	98 806	0162	17 362	138	107	273	95 690	124	10	55	26	26 573	16	15	78	12	/12	65	8/3
lovenne	Verse de Nartau	69 687	48 306	101 502	13 700	15 538	265	107	422	127 459	127	10	101	69	67 186	66	4	93	13	46	87	812
1inimum	Verse de Nartau	5 009	11 751	16.321	1 1 26	1 270	14	25	55	17 469	36	3	5	4	517	1	1	7	3	4	6	150
1édiane	Bâtiments de Nartau	16 477	69.970	125 270	1 546	15 937	21 843	88	664	61 055	127	34	143	98	6 648	6	5	43	17	28	52	606
1édiane	Paléosédiments	16 2 6 9	85 542	191 816	134	18 355	2 978	97	811	45 048	109	48	70	132	409	2	6	66	20	33	40	733
1édiane	Plateforme Marty	11 250	62 220	131 736	5 318	14 717	14 907	79	370	63 794	97	17	66	55	1 646	2	6	62	16	32	42	589
1édiane	Sédiments du Grésillou	18 182	101 168	251 067	92	22 362	2 736	115	688	46 929	55	50	64	125	478	1	3	33	11	26	20	800
1édiane	Verse annexe de Ramèle	40 426	67 357	125 805	3 056	15 043	41 836	69	1 046	89 158	136	56	1 502	221	8 951	10	4	19	18	51	103	651
1édiane	Verse Ramèle	15 980	69 117	156 150	900	18 731	3 988	96	381	48 954	101	32	179	83	1 919	2	4	34	16	40	49	738
1édiane	Zone de résidus de four	17 667	86 652	178 840	3 054	18 437	931	99	712	54 475	111	42	74	94	2 745	4	6	66	19	27	36	767
loyenne des médianes	Cite all faunda	24.242	72 624	157.400	2.000	17.040	11 170	0.1	640	(2,420	107	20	200	101	6 474	-	_		10	25	54	710
e chaque zone d'intérêts	Site d'étude	24 213	73 634	157 436	2 908	17 618	111/0	94	618	63 138	107	30	269	104	61/1	5	5	50	10	35	51	110

*: 80% des concentrations mesurées sont des valeurs <LQ Les concentrations inférieures à la LQ ont été mises à LQ/2 et les certaines données représentent une moyenne de trois mesures triplicat par échantillon

Hg*	Pb	Bi
16	18	58
18	29	133
22	6	219
20	6	221
18	28	133
18	19	128
16	25	116
47	17	197
47	16	170
10	61	60
16	41	28
18	18	29
43	16	48
18	30	42
20	6	73
14	67	48
14	43	67
36	61	57
16	95 70	79
10	54	18
12	144	18
23	36	15
12	95	18
12	89	20
5	16	8
6	134	13
11	39	14
11	3	401
13	3	260
13	26	79
10	44	12
11	3	73
8	88	47
6	90	60
9	3 18	41
9	36	62
11	3	256
12	38	48
22	6	859
24	6	818
53	13	628
22	4	445 927
12	4	646
8	5	9
13	3	694
7	40	110
5	3	1 574
4	3	404
13	5	646
53	144	1 574
14	18	73
3	33	8
13	85	20
10	26	16
10	23	16
5	19	8
12	112	156
10	45	31
10	43	16
10	46	42

Les résultats laboratoire sont présentés dans Tableau 25 ci-dessous. Les résultats laboratoire étant moins nombreux que les résultats au pXRF et systématiquement représentés par un équivalent au pXRF corrigé en fonction des analyses laboratoire, ils n'appellent pas d'autres commentaires. Toutefois, pour les éléments non mesurés au pXRF, les éléments suivants sont mis en évidence :

- au regard des concentrations en sulfates et des concentrations en S total, il est montré que le S contenu dans les sulfates représente en moyenne 5% du S total, contre 95% dans les sulfures ;
- hormis pour le chrome, la quantité d'élément dissous par minéralisation régale représente plus de 80% de la quantité extraite par minéralisation totale ;
- l'or a été détecté après minéralisation totale. Les concentrations détectées sont significatives, de 4,6 à 5,7 mg/kg (équivalent g/t) en pied de verse et de 15 mg/kg en haut de verse de Nartau.

En conclusion, les matériaux de Nartau ont la composition de roches silico-clastiques riches en minerai.

Analyses	Carbonates totaux	%S sulfates solubles ⁴	%S sulfures⁴	Sulfates solubles	Mg	AI	S tot	Ca	Cr	Fe	Co	Ni	Cu	Zn	As	Ag	Cd	Pb	Bi	Au (LQ)	Au (LD) ¹
Unité	g/Kg	%	%	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
NAR11-25B	2	1,3%	98,7%	350	4 900	13 000	9 300	1 300	17	77 000	<16,0	<20,0	70	<39	32 000	<0,98	<3,9	23	68	<20,0	<4,4
NAR26-30B	<2,00	3,3%	96,7%	1 300	<400	2 400	13 000	<400	<8,0	63 000	<16,0	<20	<40	<40	62 000	<1,00	<4,0	<20	230	<20	<4,5
NAR26-29	<2,00	22,1%	77,9%	5 100	<400	1 500	7 700	<400	<8,1	160 000	<16,0	<20,0	87	<40	180 000	<1,00	<4,0	20	550	<20,0	15 ²
NAR9	<2,00	0,9%	99,1%	160	1 200	10 000	6 000	<390	15	120 000	<16,0	<20,0	41	<39	63 000	<0,98	<3,9	43	150	<20,0	<4,5
NAR10	<2,00	1,4%	98,6%	290	1 000	8 100	7 000	<400	12	130 000	<16,0	<20	42	41	58 000	<1,00	<4,0	42	170	<20	<4,5
NAR13	2	2,5%	97,5%	140	1 100	9 700	1 900	<380	11	56 000	<15,0	<19,0	<38	<38	23 000	<0,94	<3,8	20	53	<19,0	<4,3
NAR18	<2,00	5,9%	94,1%	1 300	5 400	24 000	7 400	1 400	31	90 000	<16,0	<20	46	49	14 000	<1,00	<4,0	62	63	<20	<4,5
NAR19	<2,00	3,0%	97,0%	820	5 500	33 000	9 200	920	43	83 000	<16,0	<20,0	46	<41	13 000	<1,00	<4,1	72	120	<20,0	<4,6
NAR23	<2,00	0,9%	99,1%	100	6 200	35 000	3 800	<390	43	70 000	<16,0	24	130	60	3 700	<0,97	<3,9	38	<39	<19,0	<4,4
NAR28	<2,00	14,7%	85,3%	1 900	<400	1 200	4 300	<400	<8,0	190 000	<16,0	<20	110	<40	180 000	<1,00	<4,0	21	510	<20	<4,5
NAR11-12-14-15	<2,00	1,5%	98,5%	110	1 500	6 100	2 500	<390	<7,9	58 000	<16,0	<20,0	<39	<39	23 000	<0,98	<3,9	27	43	<20,0	<4,2*
NAR16-17-20	2	3,8%	96,2%	1 100	4 300	11 000	9 600	1 000	12	71 000	<16,0	<20	44	<40	14 000	<1,00	<4,0	63	47	<20	4,6²
NAR21-22-24-25	2	1,7%	98,3%	270	5 400	27 000	5 400	870	33	76 000	<16,0	28	100	57	6 200	<1,00	<4,0	65	<40	<20	5,7²
% extrait (régale vs. totale) ³	n.c.	n.c.	n.c.	n.c.	n.c.	81%	95%	n.c.	38%	88%	78%	90%	89%	83%	82%	96%	88%	89%	88%	n.c.	n.c.

Tableau 25. Chimie des matériaux des verses de Nartau (résultats du laboratoire après minéralisation à l'eau régale)

n.c. : non calculable ou non concerné ; 1 : résultats entre la limite de détection et la limite de quantification ; 2 : issue de la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation à l'eau régale et la minéralisation totale ; 4 : les proportions de S contenu dans les sulfates sont calculées sur la base des concentrations en sulfates déterminé par le laboratoire, selon les hypothèses suivantes : les sulfates sont représentés par le composé SO₄² et tout le S non contenu dans les sulfates solubles est contenu dans les sulfates de fer type jaoriste n'étant pas inclus dans les sulfates solubles, le % de sulfures peut être majoré.

Client : BRGM

Site:Sites satellites de Nartau et Ramèle (anciens sites miniers et industriels de la vallée de l'Orbiel)Titre:Résultats des investigations au niveau des verses de Nartau

Dernière modification : 15/03/21

Version : a

Figure 36. Cartographie des concentrations en arsenic au droit des verses de Nartau

Descriptions_zones

Zone d'intérêt

Zone d'investigation

Concentration en arsenic (mg/kg ; pXRF)

2000 - 9000

9000 - 15000

15000 - 17000

0 17000 - 20000

20000 - 25000

25000-30000

30000 - 50000

50000 - 80000

80000 - 180000

180000 - 250000

Ferricrête

Les cartographies des impacts en arsenic (Figure 38) mettent en évidence de fortes concentrations en haut des verses (10,2-24.1%), des concentrations intermédiaires en pied et corps de verse principale (1,1-7,3%), ainsi que des concentrations relativement faibles en pied et corps de verses secondaires (0,2-1,3%).

8.1.6.2 Chimie incluant de la fraction granulométrique > 2 mm

La fraction granulométrique grossière (i.e. graves et blocs ; >2 mm) représente environ 70% de la masse des échantillons prélevés (Tableau 21, Tableau 22 et Tableau 23).

Afin de caractériser la contribution des fractions granulométriques, des échantillons composites de blocs ont été prélevés sur l'ensemble des zones investigués des pieds de verses (NAR11-25B) ainsi qu'en haut de la verse principale (NAR26-30B). En parallèle la fraction fine de ces échantillons a également été caractérisée sur l'ensemble de la zone investigués. Ainsi, des concentrations d'« échantillons représentatifs » des deux zones précitées ont été calculés en pondérant par la masse des fractions afin d'estimer la contribution de chacune des fractions sur les concentrations en As, S et Fe (Figure 37).

Figure 37. Contribution chimique des fractions fines et grossière des matériaux de Nartau

La Figure 37 met en évidence :

- que les paternes des histogrammes entre Fe et As sont similaires pour chacun des échantillons, ce qui suggère que les matériaux issus des deux fractions granulométriques ont une origine commune ;
- pour les matériaux de pied de verse :
 - que la fraction grossière est légèrement plus concentrée en Fe (x1,03) et largement plus concentrée en As (x2) que la fraction fine ;
 - que la fraction fine est plus concentrée en S (x1,33) ;
- pour les matériaux de haut de verse :
 - que la fraction fine est largement plus concentrée en Fe (x2,73) et en As (x3,15) que la fraction grossière ;
 - o que la fraction fine est plus concentrée en S (x1,33) que la fraction grossière ;

Cela indique que le stock d'arsenic est majoritairement contenu dans la fraction grossière pour les matériaux des pieds de verse. A l'inverse, l'arsenic est majoritairement contenu dans la fraction fine pour les matériaux en haut de verse. En effet, les blocs des matériaux du haut des verses sont majoritairement composé de quartz. On note que malgré la prédominance de l'arsenic dans la fraction fine pour les matériaux des haut de verses, celle-ci est indurée et cimentée, ce qui limite sa mobilité et les surfaces d'échange lors des processus de lixiviation

8.1.6.3 Chimie des fractions granulométriques < 2 mm

La fraction fine des matériaux des pieds de verses (NAR11-12-13-14-15, NAR16-17-20 et NAR 21-22-24-25) a fait l'objet d'analyses granulochimiques consistant en l'analyse chimique des fractions granulométriques suivantes :

- 0-63 µm ;
- 63-200 µm ;
- 200-2000 µm.

Les résultats sont présentés dans le Tableau 26 et la Figure 38. Ils montrent que :

- les concentrations sont d'autant plus élevées que la fraction est fine. Cela s'explique par le fait que les silicates tels que le quartz qui sont difficilement érodables et prépondérant dans les roches originelles ont tendance à être représentés dans les fractions plus grossières ;
- pour les 3 échantillons composites analysés, l'arsenic est environ 2,3 à 3,8 plus concentré dans la fraction 63-200 µm que dans la fraction 200-2000 µm, et de 3 à 5,2 fois plus concentré dans la fraction 0-63 µm que dans la fraction 200-2000 µm;
- la fraction la plus grossière (200-2000 μm) représente une masse relative majoritaire allant de 70 à 97% de la masse des échantillons, alors que les fractions 0-63 et 63-200 μm ont des masses relatives équivalentes (de 1 à 13% selon les échantillons).

Les concentrations et les masses relatives de chaque fraction évoluant différemment, des contributions en arsenic de chaque fraction sur la concentration de la fraction globale a été calculé par pondération. Il en résulte que :

- pour l'échantillon NAR11-12-13-14-15 : en raison de sa masse relative prépondérante et malgré sa relative faible concentration, la fraction la plus grossière est à l'origine de 92% de l'arsenic dans cet échantillon ;
- pour les deux autres échantillons : les effets de concentrations et de masses relatives de chacune des fractions se compensent de façon à obtenir des contributions en arsenic du même ordre de grandeur pour chaque fraction : environ 40% dans la fraction la plus grossière et environ 30% dans chacune des deux autres fractions plus fines.

En conclusion, l'étude de la distribution en arsenic dans les différentes fractions granulométriques montre que :

- pour les matériaux du haut des verses : malgré la plus faible proportion massique de la fraction fine (<2 mm), le stock d'arsenic est majoritairement contenu dans cette fraction (63% de l'arsenic). Cette fraction demeure cependant indurée et cimentée ce qui limite sa mobilisation et la lixiviation de l'arsenic qu'elle contient.
- pour les matériaux de pied des verses : la fraction grossière (> 2mm), moins mobilisable et lixiviable, étant plus représentée et plus concentrée, 83% du stock d'arsenic est contenu dans cette fraction ;

ID échantilon	Fraction	Masse relative	[As]	[As]fraction fine/[As]fraction grossière	Q[As] relatif	Q[As]	carbonates totaux	sulfates	Au	AI	Ag	As	Bi	Cd	Ca	Co	Cr tot	Fe	Mg	Ni	Pb	Cu	Zn	S tot
NAR11-12-14-15	0-2000	100%	23 000	n.c.	100%	23 000	<2,00	110	<20,0	6 100	<0,98	23 000	43	<3,9	<390	<16,0	<7,9	58 000	1 500	<20,0	27	<39	<39	2 500
NAR11-12-14-15	200-2000	97%	21 771	1,0	92%	21 053	<2,00	101	<20,0	5 536	<1,00	21 771	38	<4,0	<390	<16,0	<7,9	56 070	1 479	<20,0	23	39	<39	2 319
NAR11-12-14-15	63-200	2%	51 000	2,3	5%	1 071	<2,00	300	<19,0	11 000	<0,96	51 000	150	<3,8	<380	<15,0	17	100 000	1 500	<19,0	100	45	<38	6 000
NAR11-12-14-15	0-63	1%	73 000	3,4	4%	876	<2,00	500	<21,0	43 000	4	73 000	240	<4,2	<420	<17	84	140 000	3 200	<21,0	230	63	<42	11 000
NAR16-17-20	0-2000	100%	14 000	n.c.	100%	14 000	2	1 100	<20	11 000	<1,00	14 000	47	<4,0	1 000	<16,0	12	71 000	4 300	<20	63	44	<40	9 600
NAR16-17-20	200-2000	76%	7 726	1,0	42%	5 895	2	653	<20,0	9 153	<1,00	7 726	14	<4,0	923	<16,0	6	46 972	4 105	<20,0	-2	34	<39	5 738
NAR16-17-20	63-200	13%	29 000	3,8	26%	3 625	2	1 500	<20	16 000	<1,00	29 000	120	<4,0	1 200	<16,0	25	120 000	5 400	<20	220	66	54	14 000
NAR16-17-20	0-63	11%	40 000	5,2	32%	4 480	<2,00	3 700	<20,0	18 000	<1,00	40 000	190	<4,1	1 300	<16,0	41	180 000	4 400	<20,0	330	90	58	31 000
NAR21-22-24-25	0-2000	100%	6 200	n.c.	100%	6 200	2	270	<20	27 000	<1,00	6 200	<40	<4,0	870	<16,0	33	76 000	5 400	28	65	100	57	5 400
NAR21-22-24-25	200-2000	70%	3 727	1,0	42%	2 594	2	147	<20,0	22 511	<1,00	3 727	<40	<4,0	907	<16,0	25	58 664	4 683	23	-4	62	44	6 061
NAR21-22-24-25	63-200	13%	13 000	3,5	27%	1 703	<2,00	420	<18,0	35 000	<0,92	13 000	<37	<3,7	790	22	49	110 000	6 700	36	200	170	82	4 000
NAR21-22-24-25	0-63	17%	11 000	3,0	31%	1 903	2	650	<20,0	39 000	<1,00	11 000	44	<4,1	780	22	54	120 000	7 300	42	240	200	92	3 800

Tableau 26. Granulochimie des échantillons aux pieds des verses de Nartau

*: la concentration en As pour la fraction 200-2000 microns est déduite par calcul du bilan de concentation massique à l'aide notamment des masses relatives ; en présence de LQ les calculs ont considéré la LQ/2

Figure 38. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques pour des échantillons aux pieds des verses de Nartau ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction.

8.1.7 *Minéralogie et distribution des éléments*

La minéralogie et la distribution des éléments sont appréhendés par les analyses DRX et d'extractions séquentielles. Les échantillons analysés correspondent aux échantillons de fraction fine (<2 mm) des pieds de verses et du haut de la verse principale ainsi que de leurs équivalents de fraction grossière (> 2 mm).

8.1.7.1 Résultats d'analyses DRX

Les résultats des analyses DRX sont fournis dans le Tableau 27 et la Figure 39. Les analyses DRX étant moins précises que les analyses ICP, des bilans massiques ont été calculés pour l'arsenic, le soufre et le fer, sur la base des proportions modales (en fonction des proportions minéralogiques) puis comparés aux analyses ICP (Tableau 27).

Les échantillons analysés aux pieds de verses sont NAR12-14-15, NAR16-17-20, NAR21-22-24-25, NAR11-25B, ceux en haut de verse sont NAR26-29 et NAR26-30B. Les échantillons de fractions grossières comportant des blocs sont notés avec un B.

Echantillons de pieds de verse

Les échantillons aux pieds de verses comportent entre 93 et 99% de silicates dont les principaux sont le quartz (42-64%), les mica blanc (muscovite et séricite ; 28-44%), les argiles (5,6-10,1%) et dans une moindre mesure les feldspaths (0,4-7,9%). Ces compositions minéralogiques indiquent que ces matériaux dérivent de roches silicoclastiques (i.e. micaschistes et/ou de quartzites pélitiques).

Les autres phases minérales correspondent :

- à des oxydes de fer : ferreux (Fe²⁺; magnétite) ou ferrique (Fe³⁺; goethite, hématite) dont les proportions varient entre 0,2 et 1,3% dans les échantillons de fraction fine et atteignent 6,6% dans l'échantillon de fraction grossière;
- à un arséniate : la scorodite, retrouvé à 5,4% dans l'échantillon de fraction grossière seulement ;
- à des sulfures : la chalcopyrite, plus abondante dans l'échantillon de fraction grossière (0,9%, NAR11-25B) que dans celui de fraction fine (0,3%, NAR16-17-20) ;
- à des sulfates : la jarosite, un sulfate de fer, est retrouvée dans 2 des 3 échantillons de fraction fine (1-5,6%).

La seule phase arséniée retrouvée est la scorodite, dans l'échantillon de fraction grossière. Cependant, sur la base de sa proportion, on calcule un défaut de bilan en As. Par ailleurs, on observe aussi un défaut de bilan pour le S et le Fe (présent dans la scorodites, les sulfures et les sulfates). Ce défaut de bilan d'As peut etre donc du soit à une sous-estimation de la proportion en scorodites et/ou soit à la présense d'As dans les phases potentiellement arseniées (Jarosite, argiles, hématite, magnétite) et/ou soit par l'hétérogénéité de l'échantillon.

Echantillons de haut de verse

Les deux échantillons en haut de verse comportent des proportions moindres en silicate par rapport aux échantillons de pied de verse. On retrouve 76% de silicates dans l'échantillon de fraction grossière avec principalement du quartz (65%) et seulement 10% d'aluminosilicates ainsi que seulement 33% de silicates dans l'échantillon de fraction fine dont 30% de quartz.

Ceci est cohérent avec les observations macroscopiques qui montrent une prépondérance de bloc de quartz parmi les blocs.

L'unique autre phase en proportion notable est la scorodite, seule phase arséniée dans les échantillons, retrouvée à 69% dans l'échantillon de fraction fine et à 24% dans l'échantillon de fraction grossière.

Le bilan massique en Fe ne contient que très peu de résidus et corrobore les proportions de scorodite donné par les analyses DRX. En revanche, le bilan en As est en surplus et celui du S en déficit ce qui suggère une surestimation de la scorodite et la présence de sulfures et/ou sulfates ayant des proportions modales (en fonction des proportions minéralogiques) en As moindres que celle de la scorodite.

Tableau 27. Minéralogie des matériaux de Nartau et bilan de concentration en arsenic, fer et soufre

							Pied de	verses		Haut de	verse
Minéral	Formule	Poids moléculaire du minéral (g)	% massique As	% massique Fe	% massique S	NAR11- 12-14- 15	NAR16- 17-20	NAR21- 22-24- 25	NAR11- 25B	NAR26- 29	NAR26- 30B
Silicates						99	94	99	93	33	76
Quartz	SiO ₂					59	42	47	64	30	65
Groupe micas (aluminosilicate)						33	36	44	28	2	10
Muscovite	KAI ₂ (AlSi ₃ O ₁₀)(OH) ₂					10,3	29,5	43,6	8,2	1,9	5,1
Séricite	KAI ₂ (AlSi ₃ O ₁₀)(OH) ₂					23	6,5	0	19,5	0	4,8
Allurgite	K(Al,Mn ³⁺) ₂ (AlSi ₃ O ₁₀)(OH) ₂					0	0	0	0	0	0
Phengite	KAI _{1.5} (Mg) _{0.5} (AI _{0.5} Si _{3.5} O ₁₀)(OH) ₂					0	0	0	0	0	0
Groupe chlorites (aluminosilicate)						0,0	0,5	0,0	0,7	0,0	0,0
Chlorite	(Fe,Mg,Al) ₆ (Si, Al)4O ₁₀ (OH) ₈	1013,6		11%		0	0,5	0	0,7	0	0
Clinochlore	Mg ₅ Al(AlSi ₃ O ₁₀)(OH) ₈					0	0	0	0	0	0
Chamosite	(Fe ²⁺ ,Mg,Al,Fe ³⁺) ₆ (Si,Al) ₄ O ₁₀ (OH,O) ₈	780		22%		0	0	0	0	0	0
Groupe feldspaths (aluminosilicate)						1,1	5,2	7,9	0,4	0,0	0,0
Feldspath						0	0	0	0	0	0
Albite						1,1	5,2	0	0,4	0	0
Ca-Na-Feldspath	(Ca,Na)(Al ₂ Sl ₂ O ₈)					0	0	7,9	0	0	0
Sr-Al feldsnath	Sr/Ca/Na(Al2Si2O8)					0	0	0	0	0	0
Groupe argiles (aluminosilicate)						5,6	10,1	0,0	0,0	0,0	0,4
Montmorillonite	(Na, Ca) _{0.33} (Al,Mg) ₂ (Si ₄ O ₁₀)(OH) ₂ .nH2O					0	0	0	0	0	0
Kaolinite	Al ₂ (Si ₂ O ₅)(OH) ₄					0	0	0	0	0	0
Illite	K _{0.65} Al _{2.0} [Al _{0.65} Si _{3.35} O ₁₀](OH) ₂					5,6	10,1	0	0	0	0,4
Groupe zéolite (aluminosilicate)						0	0	0	0	1	0
Zéolite	Si, Al, K, Na, Ca hydraté					0	0	0	0	0	0
Sr,Cs zéolite						0	0	0	0	1	0
Groupe oxy/hydroxydes de Fer	2, 2,					0,2	0,4	1,3	1,2	6,0	
Magnetite	$Fe^{2+}Fe^{3+}{}_{2}O_{4}$	176		64%		0	0,3	0,2	0	6	0
Titanomagnétite	Fe ²⁺ (Fe ³⁺ ,Ti) ₂ O ₄	176		64%		0	0	0	0	0	0
Goethite	α-Fe ³⁺ O(OH)	89		63%		0	0,1	0	1,2	0	0
Hematite	Fe ³⁺ ₂ O ₃	160		65%		0,2	0	1,1	0	0	0
Arséniate	2.					0	0	0	5,4	66,8	24,3
Scorodite	Fe ³⁺ AsO ₄ · 2H ₂ O	231	32%	24%		0	0	0	5,4	66,8	24,3
Arsénite						0	0	0			
Arsénolite	As ₂ O ₃	198	75%			0	0	0	0	0	0
Groupe sulfures	CuEoS	194		21%	25%	0	0,3	0	0,9	0	0
Durito		104		31%	53%	0	0,5	0	0,9	0	0
Arsénonyrite	Febs	120	46%	3/%	20%	0	0	0	0	0	0
Orniment	Ass	105	70%	5470	30%	0	0	0	0	0	0
Groupe sulfates		107	10/0		50/0	1	5,6	0	0	0	0
Sulfate de Cs	Cs ₂ SO ₄	362			9%	0	0	0	0	0	0
Jarosite	KFe ³⁺ ₃ (SO ₄) ₂ (OH) ₆	501		13%	13%	1	5,6	0	0	0	0
Groupe carbonates						0	0	0	0	0	0
Calcite	CaCO ₃					0	0	0	0	0	0
Dolomite	CaMg(CO ₃) ₂					0	0	0	0	0	0
Groupe phosphates						0	0	0	0	0	0
Berlinite	AIPO ₄					0	0	0	0	0	0
Autres						0	0	0	0	0	0
Na, Cs Fullérène c60						0	0	0	0	0	0
% phasas arsónióas		Bilan A	AS			0	0	0	10.9	66.9	24.2
As calculé (stochiométrie : ppm)						0	0	0	17532	216883	78896
As ICP totale (ppm)						26000	19000	8800	33000	190000	59000
Bilan (ICP-DRX)						26000	19000	8800	15468	-26883,1	-19896
Phases potentiellement arséniées (%)					6,8	16,1	1,3	1,2	0	0,4
Phase probable 1						Arg	Arg	Hmt	Goe		
Phase probable 2						Jar	Jar	Mgt			
Phase probable 3						Hmt	Mgt				
		Bilan F	e				mint				
Fe calculé (stochiométrie ; ppm)		5				2 577	11 160	8 423	24 162	200 121	58 909
Fe ICP totale (ppm)						55 000	87 000	87 000	74 000	170 000	59 000
Bilan (ICP-DRX)						52 423	75 840	78 577	49 838	-30 121	91
		Bilan	S								
% massique S calculé (stochiométrie	2)					1277	8200	0	3139	0	0
% massique As ICP totale						2 100	9 200	3 000	8 861	7 900	11 000
	phase arséniée					025	1000	3 000	0.001	7 500	11 000

phase potentiellement arséniée Abbréviation : Arg : argile ; Mgt : magnétite ; Ti-Mgt : titanomagnétite ; Hmt : Hématite ; Goe : giéthite ; Jar : jarosite ; Ber : belinite. en rouge : bilan négatif entre la concentration en As calculé selon les proportions minéralogiques et la concentration en As déterminé à l'ICP

Figure 39. Proportions minéralogiques des matériaux de Nartau

8.1.7.2 Résultats des extractions séquentielles

Les résultats des extractions séquentielles sont exprimés en mg/kg dans le Tableau 28. Ils sont également exprimés en pourcentage extrait dans le Tableau 29 en considérant la concentration extraite la plus haute parmi la somme des concentrations des fractions F0+F1+F2+F3 et la concentration de la minéralisation totale, afin de normaliser les résultats à 100%. En effet, le Tableau 28 montre que pour certains éléments comme le calcium, systématiquement, mais également parfois le Fe ou l'As, les extractions séquentielles sont plus efficaces que la minéralisation totale et montrent des bilans positifs. Les extractions de la fraction F0 seront discutées dans la section suivante.

Nous rappelons que les objectifs des extractions séquentielles sont de quantifier les éléments extraits pour les fractions suivantes :

- F0 : fractions lixiviable ;
- F1 : fraction adsorbée sur les surfaces minérales (e.g. argiles) ;
- F2 : fraction réductibles (oxy/hydroxydes) ;
- F3 : fraction oxydable (sulfures et matière organique) ;
- RES : fraction résiduelle (silicates).

Les résultats des extractions séquentielles mettent en évidence les éléments suivants :

- l'aluminium est en grand majorité issue de la fraction résiduelle RES (49-92%; moy=76%) en accord avec sa distribution dans les silicates, mais aussi dans la fraction F2 (3-44%; moy=15%) indiquant qu'il forme des oxy/hydroxydes d'aluminium;
- le bismuth est retrouvé à 50% dans la fraction réductible F2, 47% dans la fraction résiduelle RES et 3% dans la fraction oxydable F3 ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2;
- le calcium est extrait en majorité dans la fraction F0 (7-41%; moy=33%), témoin de sa présence dans des sels et/ou le gypse (CaSO₄), mais aussi en grande partie dans la fraction réductible F2 (10-48%; moy=27%) probablement synonyme de la présence des sulfates non dissous à l'étape F0;
- le magnésium a des comportements différents selon les échantillons dans lequel il se trouve, il est retrouvé en majorité dans les fractions lixiviable F0, oxydable F3 et/ou résiduelle RES ;
- le plomb est retrouvé en proportion équivalente dans la fraction réductible F2 (43-61%; moy=52%) ou la fraction résiduelle RES (38-55%; moy=47%) ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes et des sulfates de fer facilement dissous lors de l'étape 2;
- le zinc est extrait en majorité dans la fraction réductible (14-54%; moy=30%) ou la fraction résiduelle (11-72%; moy=47%) ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2;
- le fer est extrait par ordre d'importance, dans la fraction réductible F2 (66-94%; moy= 78%), dans la fraction résiduelle (0-31%; moy=17%) et dans la fraction oxydable F3 (2-6%; moy=4%). Cela indique qu'il est en majeur partie contenu dans des oxy/hydroxydes mais également dans une fraction réductible F2 tels que les sulfures et les sulfates de fer. En raison de la très faible proportion de silicate de fer dans l'ensemble des échantillons du site (i.e. chlorite) il est probable que le fer issu de la fraction résiduelle est contenu dans des sulfures de fer. C'est le cas des échantillons de pied de verse qui contiennent également du S dans la fraction résiduelle, synonyme de la présence de sulfures, en accord avec les bilans déficitaires en S mis en évidence dans la section précédente ;
- le soufre est en moyenne extrait en proportion équivalente (34%) dans les fractions F2 et résiduelle RES, mais également dans les fractions échangeable (F0+F1 ; 30%). Il n'est que très peu contenu dans la fraction oxydable associée aux sulfures indiquant que cette étape est peu efficace pour extraire le S des sulfures. L'abondance de S contenu dans la fraction résiduelle pour l'échantillon du haut de verse (51%) suggère qu'il contient des sulfures qui n'ont pas été détecté en DRX mais qui est compatible avec le bilan déficitaire en S mis en évidence dans la section précédente ;
- l'arsenic est majoritairement extrait dans la fraction F2 (38-96%; moy=72%), mais également dans le fraction résiduelle RES (0-62% moy=26%). Cela indique qu'il est principalement associé aux oxy/hydroxydes de fer (± de manganèse et d'aluminium), confromément résultats d'analyse de DRX qui indiquent la présence de scorodite, ainsi qu'aux sulfures et/ou aux hydroxysulfates de type jarosite. Il est également retrouvé en faible proportion dans la fraction F1, adsorbé sur les surface minérale (0-5%; moy=3%), ce qui suggère qu'il n'est que très peu adsorbé sur les minéraux tels que les argiles.

ID échantillon	Fraction	AI	As	Bi	Ca	Fe	Mg	Pb	S	Zn
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	F0	2,3	1,4	<0,01	6,9	276,0	4,1	<0,01	170,0	<0,5
	F1	5 283	292	<0,04	13	153	6	0	231	2
	F2	687	22 652	42	44	28 592	73	21	1 895	6
NAD11 12 14 15	F3	20	3	2	30	863	41	0,1	13	3
NAR 11-12-14-15	RES	15 987	3 582	11	0,0	13 580	782	19	298	31
	Total fractions	5 992	22 947	44	93	29 884	124	21	2 310	12
	Minéralisation totale	21 979	26 529	55	12	43 465	906	40	2 608	42
	Résidus* (%)	73%	14%	20%	-670%	31%	86%	47%	11%	73%
	F0	27,8	1,0	<0,01	127,0	78,0	27,0	0,01	793,0	0,1
	F1	10	881	<0,04	30	226	14	<0,04	2 594	<1
	F2	687	22 652	29	31	28 592	318	25	1 949	7
NAD16 17 20	F3	64	3	2	124	1 828	199	0,1	62	5
NAR 10-17-20	RES	9 414	0,0	21	0,0	9 185	586	24	3 381	17
	Total fractions	788	23 536	31	312	30 724	558	25	5 398	13
	Minéralisation totale	10 202	15 438	51	277	39 910	1 144	50	8 779	30
	Résidus* (%)	92%	-52%	40%	-13%	23%	51%	49%	39%	58%
	F0	4,1	0,4	<0,01	105,0	0,1	21,0	0,1	218,0	1,2
	F1	200	327	<0,04	64	300	17	0,1	695	2
	F2	2 758	4 540	7	34	27 498	365	33	817	13
NAD21-22-24-25	F3	191	3	2	52	1 828	118	1	142	8
NAN21-22-24-23	RES	3 070	1 962	14	0,0	4 922	8	21	997	22
	Total fractions	3 154	4 869	9	254	29 626	521	34	1 872	24
	Minéralisation totale	6 224	6 831	22	41	34 548	529	54	2 868	46
	Résidus* (%)	49%	29%	62%	-515%	14%	1%	38%	35%	47%
	F0	75,2	6,4	0,05	12,1	57,0	11,0	0,2	1 441,0	<0,5
	F1	15	715	0	5	41	3	0,1	2 062	<1
	F2	94	70 221	194	10	34 845	6	8	1 161	3
NAR26-20	F3	2	3	0,4	2	2 230	3	0,1	95	1
NAN20-25	RES	2 009	113 803	354	0	0	0,3	10	4 989	1
	Total fractions	186	70 945	194	29	37 174	23	8	4 759	4
	Minéralisation totale	2 195	184 748	548	5	26 722	23	19	9 747	5
	Résidus* (%)	92%	62%	65%	-509%	-39%	1%	55%	51%	26%

Tableau 28. Résultats d'extractions séquentielles en mg/kg pour les matériaux de Nartau

* : Résidus% = (Minéralisation totale - Total fractions)/ Minéralisation totale

ID échantillon	Fraction	AI	As	Bi	Са	Fe	Mg	Pb	S	Zn
		%	%	%	%	%	%	%	%	%
	F0	0,010%	0,005%	0,009%	7,387%	0,635%	0,452%	0,013%	6,519%	0,593%
	F1	24%	1%	0%	13%	0%	1%	0%	9%	5%
NAR11-12-14-15	F2	3%	85%	77%	48%	66%	8%	53%	73%	14%
	F3	0%	0%	3%	32%	2%	5%	0%	1%	8%
	RES	73%	14%	20%	0%	31%	86%	47%	11%	72%
	F0	0,272%	0,004%	0,010%	40,704%	0,195%	2,360%	0,026%	9,033%	0,326%
	F1	0%	4%	0%	10%	1%	1%	0%	30%	2%
NAR16-17-20	F2	7%	96%	57%	10%	72%	28%	50%	22%	24%
	F3	1%	0%	3%	40%	5%	17%	0%	1%	18%
	RES	92%	0%	40%	0%	23%	51%	49%	39%	56%
	F0	0,066%	0,006%	0,023%	41,261%	0,000%	3,971%	0,092%	7,600%	2,608%
	F1	3%	5%	0%	25%	1%	3%	0%	24%	4%
NAR21-22-24-25	F2	44%	66%	32%	13%	80%	69%	61%	28%	28%
	F3	3%	0%	7%	21%	5%	22%	1%	5%	18%
	RES	49%	29%	61%	0%	14%	1%	38%	35%	47%
	F0	3,426%	0,003%	0,009%	41,161%	0,153%	47,872%	1,117%	14,784%	4,764%
	F1	1%	0%	0%	17%	0%	13%	0%	21%	10%
NAR26-29	F2	4%	38%	35%	36%	94%	26%	43%	12%	54%
	F3	0%	0%	0%	7%	6%	12%	1%	1%	21%
	RES	92%	62%	65%	0%	0%	1%	55%	51%	11%

Tableau 29. Résultats d'extractions séquentielles en % extrait pour les matériaux de Nartau

En raison de l'importance de de la fraction extractible à l'eau (F0) et de ses faibles concentration, les chiffres significatifs après la virgule ont volontairement été ralongés. Les résultats sont normalisés à 100%, en utilisant la plus grande des concentrations parmi celle issue de la minéralisation totale ou de la somme des fractions

En conclusion, l'étude de la distribution des éléments dans les phases minéralogiques indique que l'arsenic est en majeure partie contenu dans la scorodite, et de façon minoritaire dans des sulfates et des sulfures. La scorodite est un minéral omniprésent dans les matériaux de haut de verse et est préférentiellement présent dans la fraction grossière en pied de verse.

8.1.8 *Transfert des éléments*

Les transferts liés au ruissellement de l'eau de pluie en surface et la lixiviation sont appréhendés par les tests de lixiviation. Les lixiviations ont été réalisées :

- lors d'une étape en parallèle des extractions séquentielles (F0) pour 4 échantillons, dont 3 en pied de verse et 1 en haut de verse ;
- lors de tests de lixiviation dans le cadre de pack ISDI avec une liste étendue d'éléments.

Les résultats de lixiviation sont présentés dans le Tableau 28, le Tableau 29, et le Tableau 30.

Les résultats de lixiviation au cours des extractions séquentielles montrent les éléments suivants :

- les éléments les plus mobilisables dans l'eau sont le calcium (32%), le magnésium (14%) et le soufre (9%);
- les éléments peu mobilisables dans l'eau sont l'aluminium (1%) et zinc (2,4%) ;
- les éléments les moins mobilisables sont l'arsenic (0,005%) et le fer (0,246%), le bismuth (0,013%) et le plomb (0,312%);
- la plus grande quantité d'arsenic mobilisé dans l'eau est celle retrouvée dans l'échantillon le plus concentré (NAR26-29), elle représente 6,4 mg/kg sur les 184 749 mg/kg de disponible.

Les résultats de lixiviation issu des pack ISDI montrent les éléments suivants :

- parmi les éléments mesurés les éléments ou composés lixiviables sont les suivants : Al, As, Ca, Fe, Mg, Cu, S, Hg, Ni, Pb, Bi, Sb, Ba, Co, Cr, Se et Zn, Cl⁻, Fl⁻ et SO₄²⁻, ;
- les éléments les plus mobilisables dans l'eau sont le calcium (11%), le magnésium (0,3%) et le soufre (3%);

- les éléments les moins mobilisables sont l'arsenic (0,016%) et le fer (0,546%) ;
- la plus grande quantité d'arsenic mobilisé dans l'eau est celle retrouvée dans l'échantillon le plus concentré (NAR27-30), elle représente 19 mg/kg sur les 110 000 mg/kg de disponible.

Les deux types de lixiviation montrent des résultats similaires dont les ordres de grandeurs sont les mêmes, à l'exception du magnésium. Nous rappelons que les résultats sont fortement affectés par le rapport L/S et sont donc difficilement comparables d'une méthode de lixiviation à l'autre.

Un tableau de synthèse décrit les paramètres et les résultats des tests de lixiviation pour l'arsenic.

Analyses	AI	As	Са	Fe	Mg	Cu	S tot	Hg	Мо	Ni	Pb	Au	Bi
Unité	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
NAR1-2-3-7-8 (brut)	8300	42000	970	72000	2400	<41	9300	n.a.	n.a.	<21,0	<21,0	<21,0	150
NAR1-2-3-7-8 (éluat)	<0,200	5,8	110	0,96	7,3	<0,0100	110	0,0058	<0,00500	0,023	<0,0100	<0,200	<0,400
NAR1-2-3-7-8 (% lixiviable)	n.c.	0,014%	11,340%	0,001%	0,304%	n.c.	1,183%	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.
NAR27-30 (brut)	1800	110000	<400	97000	<400	43	22000	n.a.	n.a.	<20	<20	<20	330
NAR27-30 (éluat)	58	19	36	530	5,9	0,54	1100	<0,00200	<0,00500	0,18	0,057	<0,200	<0,400
NAR27-30 (% lixiviable)	3,222%	0,017%	n.c.	0,546%	n.c.	1,256%	5,000%	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.
Analyses	Fľ	Phé (ind	enol lice)	Cľ	SO4 ²⁻	Sb	Ag	Ва	Cd	Со	Cr	Se	Zn
Unité	mg/Kg	mg	/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
NAR1-2-3-7-8 (brut)	n.a.	n.	a.	n.a.	n.a.	n.a.	<1,00	n.a.	<4,1	<17	22	n.a.	<41
NAR1-2-3-7-8 (éluat)	<0,50	<5	,00	<5	330	0,019	<0,0100	<0,0100	<0,00400	0,0077	<0,0100	<0,0100	<0,050
NAR1-2-3-7-8 (% lixiviable)	n.c.	n	.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.
NAR27-30 (brut)	n.a.	n.	a.	n.a.	n.a.	n.a.	<1,00	n.a.	<4,0	<16,0	<8,1	n.a.	<40
NAR27-30 (éluat)	<5	<5	,00	<50	4200	0,12	<0,0100	0,28	<0,00400	0,051	0,57	0,014	0,12
NAR27-30 (% lixiviable)	n.c.	n	.C.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.

Tableau 30. Proportion des éléments lixiviables (%) issues des essais de lixiviation de pack ISDI

n.a. : non analysé ; n.c. : non calculable

N.B. : les paramètres organiques analysés dans le cadre des pack ISDI sont tous inférieurs aux LQ et ne sont donc pas traités ici. Ils sont toutefois annexés au rapport.

Tableau 31. Synthèse des paramètres et résultats de lixiviation des échantillons de Nartau

Zone ciblée	Р	ied de vers	e	Haut de verse	Corps de verse	Haut de verse		
Echantillon	NAR11-12- 14-15	NAR16-17- 20	NAR21-22- 24-25	NAR26-29	NAR1-2-3- 7-8	NAR27-30		
Fraction granulométrique		2 r	nm		4 mm			
Rapport L/S		1(00		10			
Durée		16	6h		24	łh		
[As] éluat (mg/l)	0,014	0,01	0,004	0,064	0,58	1,9		
[As] brut (mg/kg)	26 529	23 536	6 831	184 748	42 000	110 000		
[As] éluat (mg/kg)	1,4 1 0,4			6,4	5,8	19		
Proportion d'arsenic lixiviable (% brut)	0,005%	0,004%	0,006%	0,003%	0,014% 0,017%			

En conclusion, l'arsenic est difficilement mobilisable dans l'eau puisque situé dans des phases stables, néanmoins en raison des fortes concentrations des matériaux il peut se retrouver en concentration significative dans les eaux de lixiviation, en particulier pour les matériaux de haut de verse.

L'ensemble des caractéristiques des matériaux de Nartau est synthétisé dans le tableau suivant :

8.1.9 Synthèse de la caractérisation des matériaux des verses de Nartau

Les caractéristiques physiques, chimiques, et lithologiques des matériaux des verses de Nartau sont présentés dans le tableau ci-dessous.

Tableau 32. Caractéristiques physiques, chimiques, et lithologiques des matériaux des verses de Nartau

Caractéristique	Pied de verse	Corps de verse	Haut des verses
Granulométrie (proportions massiques en %)	 73% de graves et blocs et 27% de fraction fine Blocs atteignant 20 cm Fraction fine : 81% 200-2000 μm 9% 63-200 μm 10% 0-63 μm 	70% de graves et blocs et 30% de fraction fine Blocs atteignant 20 cm	65% de graves et blocs et 35% de fraction fine Bloc de relativement petite taille (1-10 cm)
Lithologie/minéralogie	 Aspect macroscopique : Matériaux boulant ravinés et accumulés en terminaison de couloir d'érosion Fraction fine : Sable et limon/argile de composition minéralogique de micaschistes /quartzites pélitiques altérées (argile) Phases potentiellement arséniées : oxy(hydro)-des de fer Sulfates (jarosite) Fraction grossière (2 mm à <20 cm) : Micaschistes/quartzites pélitiques ±oxydés, minerais altérés à scorodite et ferricrête Phases arséniées et potentiellement arséniées : Scorodite (oxy(hydro)-des de fer Sulfures 	Aspect macroscopique : Matériaux principalement boulant mais également induré en ferricrête sur plusieurs m ² Fraction fine : Limons, sables schisteux Fraction grossière (2 mm à <20 cm) : • Micaschistes blancs à beiges ±oxydés • Matériaux carbonisés • Quartzite et/ou fragments veines de quartz	Aspect macroscopique : Matériaux indurés Fraction fine : • Sable de composition minerais altérés • Phases arséniées et potentiellement arséniées : • Scorodite (67%) • Oxydes de fer • Sulfures ±sulfates Fraction grossière (2 mm à <5-10 cm) : • Quartzite et/ou fragments veines de quartz • Micaschistes • Matériaux oxydés • Ferricrête • Phases arséniées et potentiellement arséniées : • Scorodite • Sulfures ±sulfates
Chimie/granulochimie	Concentration (vs. zone d'étude) : Pauvre en Si, Al, Ca et Mn Pauvre en Ni, Cu, Zn et Pb Riche en S, Fe, As, Se Sb, Bi et Au Echantillon global : [As] ≈ 27 500 mg/kg, fraction grossière 2 fois plus concentrée que fraction fine Fraction fine : [As] ≈ 16 000 mg/kg 58% issue fraction 200-2000 µm ([As] _{moy} ≈11 100 mg/kg) 19% issu fraction 63-200 µm ([As] _{moy} ≈11 000 mg/kg) 22% issue fraction 0-63 µm ([As] _{moy} ≈41 300 mg/kg)	Concentration (vs. zone d'étude) : Pauvre en Si, Al, Ca et Mn Pauvre en Ni, Cu, Zn et Pb Riche en S, Fe, As, Se Sb, Bi et Au Fraction fine : [As] ≈ 31 700 mg/kg	Concentration (vs. zone d'étude) : Pauvre en Si, Al, Ca et Mn Pauvre en Ni, Cu, Zn et Pb Riche en S, Fe, As, Se Sb, Bi Plus riche en Fe et As que les pieds et corps de verse Echantillon global : [As] ≈ 108 800 mg/kg, fraction fine 3 fois plus concentrée que fr grossière Fraction fine : [As] ≈ 195 500 mg/kg
Origine des matériaux	Minerais et gangue ± concassé, quelques résidus	Minerais et gangue ± concassé, quelques résidus	Minerais (peu de gangue) concassé, proximité avec les ODJ
Distribution des éléments	As distribué dans oxy/hydroxydes de fer (±Al), sulfures et sulfates	n.d.	As distribué dans oxy/hydroxydes de fer, sulfures et sulfates
Transfert	As et Fe peu mobilisables dans l'eau : Lixiviation L/S=100 : en moyenne 0,005% de l'As de la matrice solide extrait dans l'eau (0,933 mg/kg)	As et Fe peu mobilisables dans l'eau : Lixiviation L/S=100 : 0,014% de l'As de la matrice solide extrait dans l'eau (5,8 mg/kg)	As et Fe peu mobilisables dans l'eau : Lixiviation L/S=100 : 0,003% of matrice solide extrait dans l'eau Lixiviation L/S=10 : 0,017% de matrice solide extrait dans l'eau

et Au
action
le l'As de la
au (6,4 mg/kg) e l'As de la
au (1,9 mg/kg)

8.2 Bâtiments de Nartau

8.2.1 Localisation au sein des sous-bassins versants du Grésillou et écoulements de surface

Les bâtiments de Nartau sont présents sur plusieurs sous-bassins versants du Grésillou à savoir les bassins versants des stations de mesure de la qualité des eaux superficielles de Grésillou B, Grésillou C et celui de la plateforme Marty. Ces bâtiments se situent aux abords de la piste d'accès menant à la zone d'intérêt de Nartau entre 334 m NGF et 352 m NGF en zone plane et en bordure de piste dans le versant à végétation éparse.

La Figure 40 présente les pentes et les écoulements d'eau de ruissellement aux abords des bâtiments de Nartau. La présentation des caractéristiques des bassins versants Grésillou B et Grésillou C sont réalisés en § 8.9.1 . Les caractéristiques du bassin versant de la plateforme Marty sont présentées en § 8.4. Les bâtiments de Nartau ne présentent pas d'instabilité notable.

Figure 40 : Cartographie des pentes et écoulements de surface aux abords des bâtiments de Nartau

8.2.2 Caractérisation lithologique macroscopique

Les matériaux investigués des bâtiments de Nartau sont composés en moyenne de 67% de graves et blocs (55 à 74%) et 33% de matrice fine (< 2mm). Les blocs sont composés de schistes peu ou pas minéralisés, de fragments de quartz, de blocs de béton (plusieurs décimètres), ou encore de briques. Un tas matériaux rocheux en BAT8 comporte notamment des blocs de schistes minéralisés et/ou calcinés qui incluent des blocs de minerai friable à

scorodite. La matrice fine globalement est grise à brune à orange et correspond à des limons et à des sables fins.

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
BAT1	438	1258	74	sable limoneux brun	schiste +/- minéralisé, qtz
BAT2	479	1175	71	sable brun	schiste +/- minéralisé, brique
BAT3	395	971	71	sable fin brun	schiste, brique
BAT4	328	789	71	sable fin rouille	schiste +/- minéralisé, qtz
BAT5	732	898	55	sable fin brun/orange	schiste +/- minéralisé, qtz
BAT6	488	887	65	sable fin brun/orange	schiste +/- minéralisé, qtz
BAT7	382	694	64	sable limoneux brun	schiste, qtz
BAT8	715	1306	65	sable limoneux brun	schiste beige/jaune, minerais, qtz
BAT9	328	670	67	sable limoneux brun	schiste, racines
BAT10	415	713	63	limon brun	schiste

Tableau 33. Caractéristiques physiques et lithologiques des échantillons des bâtiments de Nartau

Figure 41. Photographie d'échantillons représentatifs des bâtiments de Nartau. En bas à gauche : blocs rocheux oxydés et calcinés ; en bas à droite : blocs de minerai friable à scorodite (blanc/vert)

8.2.3 Caractérisation chimique

Les résultats sont présentés dans le Tableau 34 et la Figure 42.

Dans la Figure 42, la médiane des concentrations en métaux des échantillons des bâtiments de Nartau est normalisée à la concentration moyenne de l'ensemble du site d'étude, définie comme la moyenne des médianes de chaque zone d'intérêt. Cela permet d'illustrer des appauvrissements et des enrichissements relatifs par rapport à l'ensemble du site d'étude. De plus, des valeurs de bruits de fond réalisés sur le domaine géologique de la zone axiale y sont ajoutées à des fins de comparaison. Les données provenant de deux méthodes analytiques différentes (matériaux investigués : pXRF ; bruit de fond : ICP), la comparaison n'est réalisée que sur les éléments dont les corrélations entre les deux méthodes ont été réalisées et sont bonnes.

Globalement, et comparativement aux matériaux investigués sur l'ensemble du site d'étude, les matériaux de la zone des bâtiments de Nartau sont caractérisés par :

- des teneurs moyennes en Mg, Si, Al, K, Cr, Mn, Fe, Ni, Zn, Se, Sb, Sn et Ba ;
- de faibles teneurs en Cu (<239 mg/kg);
- des teneurs variables en S et Bi mais dont la médiane est faible (S_{med}= 1 546 mg/kg ; Bi_{med}=20 mg/kg) et dont les teneurs maximales sont retrouvées en BAT8 (S_{max} = 19430 mg/kg ; Bi_{max} = 571 mg/kg) ;
- des teneurs en Ca légèrement au-dessus de la moyenne du site à l'exception des échantillons les plus impactés en As (BAT5 et BAT8) pour lesquels de plus faibles concentrations sont observées;
- des teneurs moyennes en As (As_{med}=0,7%) mais variables (0,1-2,6%) avec des valeurs en BAT5 et en BAT8 atteignant 2,6% et 2,2%, respectivement.

Comparativement au bruit de fond (figure ci-dessous), les matériaux des bâtiments de Nartau sont :

- enrichis en S, Ca, As, Pb et Bi ;
- proches ou dans la gamme du bruit de fond pour les autres éléments comparables.

Les matériaux investigués des bâtiments de Nartau ont donc la composition des sols/roches en place avec des anomalies de concentrations en S, Ca, As et Bi.

Figure 42. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux des bâtiments de Nartau (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)

Tableau 34. Chimie des matériaux des bâtiments de Nartau (résultats pXRF corrigés en mg/kg)

ID échantillon	Zone d'intérêts	Mg	AI	Si	S	к	Са	Cr	Mn	Fe	Co*	Ni	Cu	Zn	As	Se	Mo*	Ag*	Cd*	Sn	Sb	Ва	Hg*	Pb	Bi
ΒΔΤ1	Bâtiments de Nartau	17 5 1 1	77 162	1/12 836	1 / 57	15 1 29	20 506	95	668	70.064	211	45	239	335	6.849	1	1	9	16	24	32	644	12	122	19
BAT1 BAT2	Bâtiments de Nartau	15 //2	91 09 <i>1</i>	1/2 202	08/	16 8 25	10 1 23	00	660	58 211	102	28	1/7	101	3 206	4	- Q	7/	10	24	15	568	10	5/	16
BAT2	Bâtiments de Nartau	12 622	60 / 57	122 200	904 805	12 251	25 / 20	95 87	455	15 565	0/	30	102	0/	4 862	4	6	74	10	23	36	J08 451	10	67	16
BATA	Bâtiments de Nartau	25 877	50 102	116 20/	1 607	11 802	27 030	76	567	63 708	122		112	58	18 202	4	0	11	16	24	50	431	16	108	112
ΒΔΤ5	Bâtiments de Nartau	32 298	48 136	109 515	8 154	10.431	593	81	334	115 159	142	8	138	37	25 828	20	4	13	10	66	96	675	10	100	142
BAT6	Bâtiments de Nartau	27 657	83 646	117 240	1 634	23 819	3 984	88	948	86 823	132	28	213	94	18 002	9	4	78	14	40	64	1 457	16	42	48
ΒΔΤ7	Bâtiments de Nartau	13 322	56 563	97 824	3 724	11 280	23 181	65	918	47 229	102	20	137	157	6 4 4 7	4	4	7	16	-+0 22	32	465	12	118	21
BAT8	Bâtiments de Nartau	35 784	58 856	111 005	19 430	18 280	862	115	254	101 988	321	23	161	63	22 303	20	9	, 15	32	59	63	808	35	104	571
BAT9	Bâtiments de Nartau	14 133	70 482	135 980	1 191	16 744	34 092	88	1 247	47 668	254	38	93	159	4 4 5 5	8	13	172	31	59	84	558	28	42	16
BAT10	Bâtiments de Nartau	15 221	95 288	160 812	290	19 384	36.067	104	1 661	47 248	122	56	130	202	1 017	2	6	72	20	26	38	712	10	57	19
Maximum	Bâtiments de Nartau	35 784	95 288	160 812	19 430	23 819	37 030	115	1 661	115 159	321	56	239	335	25 828	20	13	172	32	66	96	1 457	35	152	571
Mediane	Bâtiments de Nartau	16 477	69 970	125 270	1 546	15 937	21 843	88	664	61 055	127	34	143	98	6 648	6	5	43	17	28	52	606	13	85	20
Movenne	Bâtiments de Nartau	20 988	69 987	126 821	3 946	15 606	19 187	90	771	68 385	160	34	156	130	11 128	8	6	52	19	37	55	678	17	87	98
Minimum	Bâtiments de Nartau	12 633	48 136	97 824	290	10 431	593	65	254	45 565	94	8	93	37	1 017	2	4	7	12	22	32	442	10	42	16
Mediane	Paléosédiments	16 269	85 542	191 816	134	18 355	2 978	97	811	45 048	109	48	70	132	409	2	6	66	20	33	40	733	10	26	16
Mediane	Plateforme Marty	11 250	62 220	131 736	5 318	14 717	14 907	79	370	63 794	97	17	66	55	1 646	2	6	62	16	32	42	589	10	23	16
Mediane	Sédiments du Grésillou	18 182	101 168	251 067	92	22 362	2 736	115	688	46 929	55	50	64	125	478	1	3	33	11	26	20	800	5	19	8
Mediane	Verse annexe de Ramèle	40 426	67 357	125 805	3 056	15 043	41 836	69	1 046	89 158	136	56	1 502	221	8 951	10	4	19	18	51	103	651	12	112	156
Mediane	Verse de Nartau	57 456	47 048	98 806	9 162	17 362	138	107	273	95 690	124	10	55	26	26 573	16	4	78	12	43	65	843	14	18	73
Mediane	Verse Ramèle	15 980	69 117	156 150	900	18 731	3 988	96	381	48 954	101	32	179	83	1 919	2	4	34	16	40	49	738	10	45	31
Mediane	Zone de résidus de four	17 667	86 652	178 840	3 054	18 437	931	99	712	54 475	111	42	74	94	2 745	4	6	66	19	27	36	767	10	43	16
Moyenne des médiane de chaque zone d'intérêts	Site d'étude	24 213	73 634	157 436	2 908	17 618	11 170	94	618	63 138	107	36	269	104	6 171	5	5	50	16	35	51	716	10	46	42

*: 80% des concentrations mesurées sont des valeurs <LQ

Les concentrations inférieures à la LQ ont été mises à LQ/2 et les certaines données représentent une moyenne de trois mesures triplicat par échantillon

Client : BRGM

Sites satellites de Nartau et Ramèle (anciens sites miniers et industriels de la vallée de l'Orbiel) Résultats des investigations au niveau des Bâtiments de Nartau

Dernière modification : 15/03/21

Figure 43. Cartographie des concentrations en arsenic au droit des bâtiments de Nartau

Concentration en arsenic (mg/kg;

- 1000 3500
- 3500 6000
- 6000 8500
- | 16000 18500
- 21000 23500
- 23500 26000
- Bâtiments de Nartau
- Tas de matériaux (résidus, roches stériles et minéralisées)

Version : a

Les cartographies des concentrations en arsenic (Figure 43) indiquent que les plus fortes concentrations sont situées à proximité d'un haut de verse secondaire de Nartau (BAT4, BAT5 et BAT6) ainsi qu'au droit du tas de roches (BAT8)

En conclusion, les matériaux investigués au droit de bâtiments de Nartau ont la composition chimique du bruit de fond de l'ensemble géologique de la zone axiale, avec des anomalies majeures en As et Bi.

8.2.4 Synthèse de la caractérisation des matériaux des bâtiments de Nartau

Les caractéristiques physiques, chimiques, et lithologiques des matériaux des bâtiments de Nartau sont présentées dans le tableau ci-dessous.

Tableau 35. Caractéristiques physiques, chimiques, et lithologiques des matériaux des bâtiments de Nartau

Bâtiments de Nartau											
Granulométrie (proportions massiques)	67% de graves et blocs et 33% de fraction fine Blocs de schistes peu ou pas minéralisés, des fragments de quartz, et de schistes minéralisés et/ou calcinés qui incluent des blocs de minerai friable à scorodite										
Lithologie/minéralogie	Aspect macroscopique : Fraction fine : • Sable plus ou moins limoneux Fraction grossière : • Micaschistes peu ou pas minéralisés, des fragments de quartz, et de schistes minéralisés et/ou calcinés qui incluent des blocs de minerai friable à scorodite										
Chimie/granulochimie	Concentration (vs. zone d'étude) : Pauvre en Cu Variables en S, et Bi, localement fortes Teneurs moyenne en As										
Origine	Terrain naturel, plus minerais										
Distribution des éléments	n.d.										
Transfert	Limité (petit bassin versant)										

8.3 Zone de résidus de four

8.3.1 Géomorphologie

La zone de résidus de four est située en contrebas de l'ancienne piste entre les cotes 316 m NGF et 313 m NGF. La banquette amont présente une pente moyenne de 6°. Les matériaux emportés par la crue d'octobre 2018 présentent une pente moyenne de 10°. La végétation est éparse sur cette zone d'intérêt (cf. Figure 44). La pente moyenne du bassin versant de la zone de résidus de four est de 9° soit 16%.

Figure 44 : Cartographie des pentes du bassin versant de la zone de résidus de four

8.3.2 Dynamique des écoulements de surface

Le bassin versant et les écoulements de surface associés à la zone de résidus de four sont présentés en Figure 45.

La zone de résidus de four reçoit les eaux de ruissellement de leur propre impluvium. Les eaux de la piste en amont de la zone d'intérêt n'impactent pas les résidus de four.

Figure 45 : Cartographie des écoulements de surface sur le bassin versant de la zone de résidus de four

8.3.3 Caractérisation lithologique macroscopique

Les matériaux prélevés de la zone des résidus de four sont situés au sein de 3 ensembles :

- un tas en talus du chemin d'accès (RES9 et RES10) ;
- une masse qui a partiellement été emportée lors de la crue de 2018 (RES4 à RES8);
- la (sub)surface du lit majeur du Grésillou qui soutenait les matériaux emportés par la crue de 2018 (RES1 à RES3).

Les matériaux disposés en masse ou en tas sont composés en moyenne de 69% de graves et blocs (52 à 80%) et 31% de matrice fine (< 2mm). Les blocs sont composés de schistes plus ou moins minéralisés et oxydés contenant localement du minerai altéré à scorodite en RES10. La matrice fine globalement est brune et correspond à des limons.

Les matériaux au sol dans le lit majeur du Grésillou sont des limons argileux compact de couleur brune/rouille dépourvus de graves et de blocs.

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
RES1	1538	0	0	limon argileux brun/rouille	n.c.
RES2	1643	0	0	limon argileux brun/rouille	n.c.
RES3	2251	0	0	limon argileux brun/rouille	n.c.
RES4	771	822	52	limon brun/beige	schiste légèrement minéralisé, qtz
RES5	488	2000	80	limon brun	schiste minéralisé, qtz
RES6	1120	1916	63	limon brun	schiste
RES7	717	2154	75	limon brun	schiste minéralisé
RES8	779	2600	77	limon brun	schiste
RES9	768	1731	69	limon brun	schiste +/- minéralisé
RES10	828	1514	65	limon brun	schiste minéralisé, minerais à scorodite

Tableau 36. Caractéristiques physiques et lithologiques des échantillons de la zone de résidus de four

Figure 46. Photographie d'échantillons représentatifs des matériaux de la zone de résidus de four

8.3.4 Caractérisation chimique et granulochimique

8.3.4.1 Chimie globale

Les résultats sont présentés dans le Tableau 37, le Tableau 38 et la Figure 47.

Dans la Figure 47 la médiane des concentrations en métaux dans les échantillons de la zone des résidus de four est normalisée à la concentration moyenne de l'ensemble du site d'étude, définie comme la moyenne des médianes de chaque zone d'intérêt. Cela permet d'illustrer des appauvrissements et des enrichissements relatifs par rapport à l'ensemble du site d'étude. De plus, des valeurs de bruits de fond réalisés sur le domaine géologique de la zone axiale y sont ajoutées à des fins de comparaison. Les données provenant de deux méthodes analytiques différentes (matériaux investigués : pXRF ; bruit de fond : ICP), la comparaison n'est réalisée que sur les éléments dont les corrélations entre les deux méthodes ont été réalisées et sont bonnes.

Globalement, et relativement aux matériaux investigués sur l'ensemble du site d'étude, les matériaux de la zone des résidus de four sont caractérisés par :

- des teneurs moyennes en Mg, Al, Si, K, Cr, Mn, Fe, Ni, Zn, Se, Sb, Sn, Ba et Pb ;
- de faibles teneurs en Ca (<4 275 mg/kg);
- de faibles teneurs en Cu (<143 mg/kg);
- une faible valeur médiane en As (As_{med}=0,3%) mais les données sont variables avec des valeurs maximales en RES1 (1,0%), RES3 (1,4%) et RES10 (1,1%);
- de faibles teneurs en Bi (<22 mg/kg).

Comparativement au bruit de fond, les matériaux de la zone des résidus de four sont :

- enrichis en S, As, et Bi ;
- proches ou dans la gamme du bruit de fond pour les autres éléments comparables.

Les matériaux investigués de la zone des résidus de four ont donc la composition des sols/roches avec des anomalies de concentration en S, As et Bi.

Figure 47. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la zone des résidus de four (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)

Les résultats laboratoire étant moins nombreux que les résultats au pXRF et systématiquement représentés par un équivalent au pXRF corrigé en fonction des analyses laboratoire, ils n'appellent pas d'autres commentaires. Toutefois, pour les éléments non mesurés au pXRF, les éléments suivants sont mis en évidence :

- au regard des concentrations en sulfates et des concentrations en S total, il est montré que le S contenu dans les sulfates (SO4²⁻ seulement, n'inclut pas jarosite) représente en moyenne 14% du S total, contre 86% dans les sulfures ;
- hormis pour le chrome, la quantité d'élément dissous par minéralisation régale représente plus de 80% de la quantité extraite par minéralisation totale ;
- les analyses de l'or montrent des teneurs inférieures à la limite de détection.

Tableau 37. Chimie des matériaux de la zone des résidus de four (résultats pXRF corrigés en mg/kg)

ID échantillon	Zone d'intérêts	Mg	AI	Si	s	к	Са	Cr	Mn	Fe	Co*	Ni	Cu	Zn	As	Se	Mo*	Ag*	Cd*	Sn	Sb	Ва	Hg*	Pb	Bi
RES1	Zone de résidus de four	27 410	83 375	180 936	7 655	18 079	384	139	596	72 198	126	36	38	83	10 254	6	4	68	25	24	32	763	14	138	18
RES2	Zone de résidus de four	14 756	89 928	192 598	1 251	18 794	357	121	436	55 577	110	48	68	97	1 024	2	6	8	18	34	36	770	8	56	16
RES3	Zone de résidus de four	30 676	78 787	176 925	10 013	17 176	243	103	547	71 268	112	26	43	68	14 039	8	4	76	16	22	32	752	14	151	18
RES4	Zone de résidus de four	19 168	106 832	208 028	4 261	19 558	4 275	81	963	49 320	106	65	143	126	2 916	4	6	66	23	26	36	809	10	29	16
RES5	Zone de résidus de four	15 366	93 012	175 838	4 230	20 340	2 947	116	943	53 373	265	74	123	127	452	6	13	151	47	49	91	791	21	24	16
RES6	Zone de résidus de four	17 139	101 572	208 459	964	21 454	1 188	95	701	56 394	112	53	79	106	654	2	6	66	18	31	36	858	8	27	16
RES7	Zone de résidus de four	18 194	91 337	180 754	1 239	19 394	967	87	722	52 721	108	40	80	80	2 794	2	6	66	18	26	36	795	10	26	16
RES8	Zone de résidus de four	14 416	71 712	145 637	633	14 319	896	71	1 037	49 064	104	42	100	88	2 696	2	6	66	18	27	36	665	10	16	14
RES9	Zone de résidus de four	14 712	80 005	164 530	1 878	15 003	2 477	92	747	51 621	108	41	48	115	2 624	4	6	8	19	24	36	574	10	155	16
RES10	Zone de résidus de four	24 181	74 541	169 506	9 197	16 429	308	109	294	70 996	291	32	43	90	11 470	8	11	19	38	30	76	717	33	351	22
Maximum	Zone de résidus de four	30 676	106 832	208 459	10 013	21 454	4 275	139	1 037	72 198	291	74	143	127	14 039	8	13	151	47	49	91	858	33	351	22
Mediane	Zone de résidus de four	17 667	86 652	178 840	3 054	18 437	931	99	712	54 475	111	42	74	94	2 745	4	6	66	19	27	36	767	10	43	16
Moyenne	Zone de résidus de four	19 602	87 110	180 321	4 132	18 055	1 404	101	699	58 253	144	46	77	98	4 892	4	7	59	24	29	45	749	14	97	17
Minimum	Zone de résidus de four	14 416	71 712	145 637	633	14 319	243	71	294	49 064	104	26	38	68	452	2	4	8	16	22	32	574	8	16	14
Mediane	Bâtiments de Nartau	16 477	69 970	125 270	1 546	15 937	21 843	88	664	61 055	127	34	143	98	6 648	6	5	43	17	28	52	606	13	85	20
Mediane	Paléosédiments	16 269	85 542	191 816	134	18 355	2 978	97	811	45 048	109	48	70	132	409	2	6	66	20	33	40	733	10	26	16
Mediane	Plateforme Marty	11 250	62 220	131 736	5 318	14 717	14 907	79	370	63 794	97	17	66	55	1 646	2	6	62	16	32	42	589	10	23	16
Mediane	Sédiments du Grésillou	18 182	101 168	251 067	92	22 362	2 736	115	688	46 929	55	50	64	125	478	1	3	33	11	26	20	800	5	19	8
Mediane	Verse annexe de Ramèle	40 426	67 357	125 805	3 056	15 043	41 836	69	1 046	89 158	136	56	1 502	221	8 951	10	4	19	18	51	103	651	12	112	156
Mediane	Verse de Nartau	57 456	47 048	98 806	9 162	17 362	138	107	273	95 690	124	10	55	26	26 573	16	4	78	12	43	65	843	14	18	73
Mediane	Verse Ramèle	15 980	69 117	156 150	900	18 731	3 988	96	381	48 954	101	32	179	83	1 919	2	4	34	16	40	49	738	10	45	31
Moyenne des médiane de chaque zone d'intérêts	Site d'étude	24 213	73 634	157 436	2 908	17 618	11 170	94	618	63 138	107	36	269	104	6 171	5	5	50	16	35	51	716	10	46	42

*: 80% des concentrations mesurées sont des valeurs <LQ

Les concentrations inférieures à la LQ ont été mises à LQ/2 et les certaines données représentent une moyenne de trois mesures triplicat par échantillon

Analyses	Carbonates totaux	%S sulfates solubles ⁴	%S sulfures⁴	Sulfates solubles	Mg	AI	S tot	Са	Cr	Fe	Co	Ni	Cu	Zn	As	Ag	Cd	Pb	Bi	Au (LQ)	Au (LD) ¹
Unité	g/Kg	%	%	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
RES1-10B	4	2,9%	97,1%	360	11 000	22 000	4 100	2 100	41	50 000	<16,0	20	<40	63	4 600	1	<4,0	43	<40	<20	<4,5
RES5	2	31,1%	68,9%	1 400	9 400	29 000	1 500	1 500	40	60 000	26	54	110	120	550	<0,93	<3,7	23	<37	<19,0	<4,2
RES10	<2,00	17,0%	83,0%	2 500	6 700	26 000	4 900	<380	38	75 000	<15,0	23	43	82	8 200	6	<3,8	290	<38	<19,0	<4,4
RES3	2	4,3%	95,7%	740	6 300	24 000	5 800	<390	32	67 000	<16,0	27	40	64	9 900	<0,98	<3,9	140	<39	<20,0	<4,5
% extrait (régale vs. totale) ³	n.c.	n.c.	n.c.	n.c.	n.c.	81%	95%	n.c.	38%	88%	78%	90%	89%	83%	82%	96%	88%	89%	88%	n.c.	n.c.

Tableau 38. Chimie des matériaux de la zone des résidus de four (résultats du laboratoire après minéralisation à l'eau régale)

n.c. : non calculable ou non concerné ; 1 : résultats entre la limite de détection et la limite de quantification ; 2 : issue de la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation à l'eau régale et la minéralisation totale ; 4 : les proportions de S contenu dans les sulfates et les sulfates sont calculées sur la base des concentrations en sulfates déterminé par le laboratoire, selon les hypothèses suivantes : les sulfates sont représentés par le composé SO42- et tout le S non contenu dans les sulfates solubles est contenu dans les sulfates de fer type jaoriste n'étant pas inclus dans les sulfates solubles, le % de sulfures peut être majoré.

Client : BRGM

Site : Mine de Nartau et Verse de Ramèle (Secteur de Salsigne) Titre : Localisation des investigations sur la zone de résidus du Four Version : b

Figure 48. Cartographie des concentrations en arsenic au droit de la zone des résidus de four

Descriptions_zones Zone d'intérêt Zone d'investigation • 450 - 2000 2000 - 3500 9500 - 11000 • 11000 - 12500 • 14000 - 14039 Hydrologie_de_surface Zone étude Grésillou

Dernière modification : 10/05/21

Page 140 Référence : R-KC/CCK -2104-1f

La cartographie des impacts en arsenic (Figure 48) indique que les plus fortes concentrations sont situées au droit du sol sous-jacent aux matériaux emportés par la crue de 2018 et au droit des tas en talus du chemin d'accès. La crue a ainsi mis à nu des matériaux proches du lit mineur du Grésillou dont les teneurs en As sont significatives (1,4% en RES3).

En conclusion, les matériaux investigués au droit de la zone des résidus de four ont la composition chimique du bruit de fond de l'ensemble géologique de la zone axiale, avec des anomalies majeures en S, As et Bi. La zone de résidus de four est une zone d'accumulation de sulfures d'As donc de matériaux minéralisés ce qui peut expliquer ces anomalies.

8.3.4.2 Contribution des fractions granulométriques fines et grossières

La fraction granulométrique grossière (i.e. graves et blocs ; >2 mm) représente environ 69% de la masse des échantillons prélevés (Tableau 21, Tableau 22 et Tableau 23).

Afin de caractériser la contribution des fractions granulométriques, des échantillons composites de blocs ont été prélevés sur l'ensemble de la zone investiguée (RES1-10B). En parallèle la fraction fine de ces échantillons a également été caractérisée (de RES1 à RES10). Ainsi, des concentrations d'« échantillon représentatif » ont été calculés en pondérant par la masse des fractions afin d'estimer la contribution de chacune des fractions sur les concentrations en As, S et Fe (Figure 49).

Figure 49. Contribution chimique des fractions fines et grossière des matériaux de la zone de résidus de four.

La Figure 49 montre que les concentrations en As, Fe et S sont similaires dans les fractions fines et grossières. Ainsi, au regard des proportions massiques des fractions granulométriques le stock d'arsenic est contenu en majorité dans la fraction grossière (>2 mm).

8.3.4.3 Chimie des fractions granulométriques < 2 mm

La fraction fine d'un échantillon situé dans le lit majeur du Grésillou (RES3) a fait l'objet d'analyses granulochimiques consistant en l'analyse chimique des fractions granulométriques suivantes :

- 0-63 µm ;
- 63-200 µm ;
- 200-2000 µm.

Les résultats sont présentés dans le Tableau 39 et la Figure 50.

Ils montrent que :

- les concentrations en éléments mesurées sont d'autant plus concentrées que la fraction est fine. Cela s'explique par le fait que les silicates tels que le quartz qui sont difficilement érodables et prépondérants dans les roches originelles et ont tendance à être représentés dans les fractions plus grossières ;
- pour l'échantillon analysé, l'arsenic est 3,7 fois plus concentré dans les fractions 0-63 μm et 63-200 μm que dans la fraction 200-2000 μm;
- la fraction la plus grossière (200-2000 µm) a une masse relative qui représente environ la moitié de la masse totale, alors que des autres fractions ont des masses relatives équivalentes et représentent chacune ¼ de la masse de l'échantillon.

Les concentrations et les masses relatives de chaque fraction évoluant différemment, des contributions en arsenic de chaque fraction sur la concentration de la fraction globale ont été calculées par pondération (Figure 50). Les résultats montrent qu'en dépit de la plus grande proportion massique de la fraction grossière ce sont les fractions les plus fines qui contiennent le plus d'arsenic dans l'échantillon. En effet, les fractions les plus fines sont à l'origine de 40% chacune de la quantité d'arsenic contre 20% pour la fraction grossière.

Ainsi, les matériaux formant le sol du lit majeur du Grésillou contenant jusqu'à 1,4% d'arsenic constitue un stock d'arsenic prépondérant dans la fraction fine, plus facilement transportable et lixiviable que la fraction grossière.

En conclusion, l'étude de la distribution en arsenic dans les différentes fractions granulométriques montre que :

- pour les matériaux de l'ensemble de la zone des résidus de four : le stock d'arsenic est contenu en majorité dans la fraction grossière (>2 mm) ;
- pour les matériaux situés dans le lit majeur du Grésillou :
 - la fraction fine (<2 mm) est la seule présente ;
 - $\circ~$ dans cette même fraction, la majeure partie de l'arsenic est contenue dans la fraction <200 $\mu m,$ plus mobilisable.

Tableau 39. Granulochimie des échantillons de la zone des résidus de four

ID échantilon	Fraction	Masse relative	[As]	[As]fraction fine/[As]fraction grossière	Q[As] relatif	Q[As]	carbonates totaux	sulfates	Au	AI	Ag	As	Bi	Cd	Ca	Co	Cr tot	Fe	Mg	Ni	Pb	Cu	Zn	S tot
RES3	0-2000	100%	9900	n.c.	100%	9900	2	740	<20,0	24000	<0,98	9900	<39	<3,9	<390	<16,0	32	67000	6300	27	140	40	64	5800
RES3	200-2000	47%	4079	1,0	19%	1905	2	543	<20,0	12587	<1,00	4079	<40	<4,0	<390	<16,0	13	38321	3723	16	37	20	33	4342
RES3	63-200	26%	15000	3,7	39%	3870	2	820	<20,0	34000	<1,00	15000	<40	<4,0	<400	18	48	88000	8300	35	210	56	88	6200
RES3	0-63	28%	15000	3,7	42%	4125	<2,00	1000	<19,0	34000	<0,97	15000	<39	<3,9	<390	18	49	96000	8800	38	250	59	94	7900

* : la concentration en As pour la fraction 200-2000 microns est déduite par calcul du bilan de concentation massique à l'aide notamment des masses relatives ; en présence de LQ les calculs ont considéré la LQ/2

Figure 50. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction.

8.3.5 *Minéralogie et distribution des éléments*

La minéralogie et la distribution des éléments sont appréhendées par les analyses DRX et d'extractions séquentielles. Les échantillons analysés correspondent à un échantillon de fraction fine au droit du sol dans le lit majeur du Grésillou ainsi qu'à un un échantillon composite de blocs sur toute la zone des résidus de four.

8.3.5.1 Résultats d'analyses DRX

Les résultats des analyses DRX sont fournis dans le Tableau 40 et la Figure 51. Les analyses DRX étant moins précises que les analyses ICP, des bilans massiques ont été calculés pour l'arsenic, le soufre et le fer, sur la base des proportions modales (en fonction des proportions minéralogiques) puis comparés aux analyses ICP (Tableau 40).

Echantillons de fraction fine dans le lit majeur du Grésillou

L'échantillon de fraction fine dans le lit majeur du Grésillou (RES3) comporte entre 86% de silicates dont les principaux sont le quartz (38%) et les mica blanc (muscovite et phengite ; 34%) et dans une moindre mesure les feldspaths (albite ; 9,6%), les chlorites (4%) et les argiles (kaolinite ; 0,7%). Cette composition minéralogique indique que ce matériau dérive de roches silico-clastiques métamorphisées (présence de phengite).

Les autres phases minérales correspondent :

- à des oxydes de fer : ferreux (Fe²⁺ ; magnétite : 1%) ou ferrique (Fe³⁺ ; hématite ; 5%) en proportion significative i.e. 6%) ;
- à des sulfures : la chalcopyrite (0,5%) ;
- à des sulfates : la jarosite un sulfate de fer pouvant potentiellement contenir de l'arsenic (7,6%).

Aucune phase arséniée n'est mise en évidence par les résultats d'analyse DRX. La teneur en As déterminée à l'ICP (1,2 %) est peut-être due à la présence d'As dans les phases potentiellement porteuses d'AS (oxydes de fer, sulfures, sulfates). En effet, la présence de jarosite et d'oxydes de fer en proportions significatives (13,6%) ne pourrait expliquer qu'en partie les 1,2% d'As. Ce défaut de bilan en As peut également s'expliquer soit 1) par l'absence de détection de phases arséniées même en petite proportion (e.g. scorodite) et/ou soit 2) par l'hétérogéneité de l'échantillon.

Echantillons composites de graves et bloc sur l'ensemble de la zone

L'échantillon de fraction grossière dans le lit majeur du Grésillou comporte entre 81% de silicates dont les principaux sont le quartz (38%) les mica blanc (muscovite ; 21%) et les feldspaths (albite ; 18%) et dans une moindre mesure, les chlorites (3%). Cette composition minéralogique indique que ce matériau dérive de roches silico-clastiques.

Les autres phases minérales correspondent :

- à un arséniate : la scorodite (19%) ;
- à des sulfures : la pyrite (0,3%).

Au regard des bilans en As, S et Fe, il semblerait y avoir une forte hétérogénéité entre les doublons d'échantillons analysés selon les deux méthodes (i.e. DRX et ICP). D'une part les proportions modales (en fonction des proportions minéralogiques) sont excédentaires en As, et d'autre part déficitaire en S, ce qui suggère que les échantillons de graves et blocs comportent moins de scorodite et plus de sulfures.

Tableau 40. Minéralogie des matériaux de la zone des résidus de four et bilan de concentration en
arsenic, fer et soufre

Minéral	Formule	Poids moléculaire du minéral (g)	% massique As	% massique Fe	% massique S	RES3	RES1- 10B		
Silicates						86	81		
Quartz	SiO ₂					38	38		
Groupe micas (aluminosilicate)						34	21		
Muscovite	KAI ₂ (AISi ₃ O ₁₀)(OH) ₂					11,6	21,2		
Séricite	KAI ₂ (AISi ₃ O ₁₀)(OH) ₂					0	0		
Allurgite	K(Al,Mn ³⁺) ₂ (AlSi ₃ O ₁₀)(OH) ₂					0	0		
Phengite	KAI _{1.5} (Mg) _{0.5} (AI _{0.5} Si _{3.5} O ₁₀)(OH) ₂					22	0		
Groupe chlorites (aluminosilicate)						3,9	3,0		
Chlorite	(Fe,Mg,Al) ₆ (Si, Al)4O ₁₀ (OH) ₈	1014		11%		3,9	0		
Clinochlore	Mg ₅ Al(AlSi ₃ O ₁₀)(OH) ₈					0	0		
Chamosite	(Fe ²⁺ ,Mg,Al,Fe ³⁺) ₆ (Si,Al) ₄ O ₁₀ (OH,O) ₈	780		22%		0	3		
Groupe feldspaths (aluminosilicate)						9,6	18,1		
Feldspath						0	0		
Albite	Na(AlSi ₃ O ₈)					9,6	18,1		
Ca-Na-Feldspath	(Ca,Na)(Al ₂ Si ₂ O ₈)					0	0		
Na-feldspath	Na(Al2Si2O8)					0	0		
Sr-Al feldspath	Sr/Ca/Na(Al2Si2O8)					0	0		
Groupe argiles (aluminosilicate)						0,7	0,0		
Montmorillonite	(Na, Ca) _{0,33} (Al,Mg) ₂ (Si ₄ O ₁₀)(OH) ₂ .nH2O					0	0		
Kaolinite	Al ₂ (Si ₂ O ₅)(OH) ₄					0,7	0		
Illite	K _{0.65} Al _{2.0} [Al _{0.65} Si _{3.35} O ₁₀](OH) ₂					0	0		
Groupe zéolite (aluminosilicate)						0	0		
Zéolite	Si, Al, K, Na, Ca hydraté					0	0		
Sr,Cs zéolite						0	0		
Groupe oxy/hydroxydes de Fer	24 24					6,0	19,1		
Magnetite	Fe ² 'Fe ³ ' ₂ O ₄	176		64%		1	0		
Titanomagnétite	Fe ²⁺ (Fe ³⁺ ,Ti) ₂ O ₄	176		64%		0	0		
Goethite	α-Fe ³⁺ O(OH)	89		63%		0	0		
Hematite	Fe ³⁺ ₂ O ₃	160		65%		5	0		
Arséniate						0	19,1		
Scorodite	Fe ³⁺ AsO ₄ · 2H ₂ O	231	32%	24%		0	19,1		
Arsénite						0	0		
Arsénolite	As ₂ O ₃	198	75%			0	0		
Groupe sulfures						0,5	0,3		
Chalcopyrite	CuFeS ₂	184		31%	35%	0,5	0		
Pyrite	FeS ₂	120		47%	53%	0	0,3		
Arsénopyrite	FeAsS	163	46%	34%	20%	0	0		
Orpiment	AsS	107	70%		30%	0	0		
Groupe sulfates						7,6	0		
Sulfate de Cs	Cs ₂ SO ₄	362			9%	0	0		
Jarosite	KFe ³⁺ 3(SO ₄) ₂ (OH) ₆	501		13%	13%	7,6	0		
Groupe carbonates						0	0		
Calcite	CaCO ₃					0	0		
Dolomite	CaMg(CO ₃) ₂					0	0		
Groupe phosphates						0	0		
Berlinite	AIPO ₄					0	0		
Autres						0	0		
Na, Cs Fullérène c60						0	0		
%	Bilan As					0	20.2		
As calculé (stochiométrie : nnm)						0	50,2 62013		
As ICP totale (nnm)						12000	6100		
Bilan (ICP-DRX)						12000	-55913		
Phases potentiellement arséniées (% ; par ordre de probabilité selon les ph	ases détéctés	;)			14,3	0		
Phase probable 1	··· ·					Jar			
Phase probable 2						Hmt			
Phase probable 3									
Phase probable 4						Arg			
	Bilan Fe								
Fe calculé (stochiométrie ; ppm)						54 407	54 165		
Fe ICP totale (ppm)						/6 000	50 000		
	Dilar C					21 293	-4 165		
% massique S calculé (stochiomótric	bilali S					11452	1600		
% massique & ICP totale	-					5 300	4 400		
Bilan (ICP-DRX)						-6 152	2 800		
	phase arséniée								
Abbréviation : Arg : argile ; Mgt : ma	phase potentiellement arséniée gnétite ; Ti-Mgt : titanomagnétite : Hmt	: Hématite : G	ioe : giéthit	e ; Jar : jar	osite ; Ber :	belinite			

Abbréviation : Arg : argile ; Mgt : magnétite ; Ti-Mgt : titanomagnétite ; Hmt : Hématite ; Goe : giéthite ; Jar : jarosite ; Ber : belinite. en rouge : bilan négatif entre la concentration en As calculé selon les proportions minéralogiques et la concentration en As déterminé à l'ICP

Figure 51. Proportions minéralogiques des matériaux de la zone des résidus de four

8.3.5.2 Résultats des extractions séquentielles

Les résultats des extractions séquentielles sont exprimés en mg/kg dans le Tableau 41. Ils sont également exprimés en pourcentage extrait dans le Tableau 42 en considérant la concentration extraite la plus haute parmi la somme des concentrations des fractions F0+F1+F2+F3 et la concentration de la minéralisation totale, afin de normaliser les résultats à 100%. En effet, le Tableau 28 montre que pour certains éléments comme le calcium et le magnésium, les extractions séquentielles sont plus efficaces que la minéralisation totale. Les extractions de la fraction F0 seront discutées dans la section suivante.

Nous rappelons que les objectifs des extractions séquentielles sont de quantifier les éléments extraits pour les fractions suivantes :

- F0 : fractions lixiviable ;
- F1 : fraction adsorbée sur les surfaces minérales (e.g. argiles) ;
- F2 : fraction réductible (oxy/hydroxydes) ;
- F3 : fraction oxydable (sulfures et matière organique) ;
- RES : fraction résiduelle (silicates).

Les résultats des extractions séquentielles mettent en évidence les éléments suivants :

- l'aluminium est issu de la fraction résiduelle (35%), en accord avec sa distribution dans les silicates, et surtout dans la fraction réductible F2 (65%) indiquant qu'il forme des oxy/hydroxydes d'aluminium;
- le bismuth est retrouvé à 40% dans la fraction réductible, 53% dans la fraction résiduelle et 7% dans la fraction oxydable ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le calcium est extrait dans toutes les fractions à l'exception de la fraction résiduelle : 21% dans la fraction F0, 13% dans la fraction F1, 49% dans la fraction réductible F2, 17% dans la fraction oxydable. Cela suggère qu'il se trouve probablement dans des carbonates, des sulfates et des oxydes ;
- le magnésium est principalement extrait dans les fractions réductible (69%) et oxydable (30%);
- le plomb est retrouvé à 78% dans la fraction réductible, 21% dans la fraction résiduelle ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le zinc est retrouvé à 14% dans la fraction réductible, 10% dans la fraction oxydable et 64% dans la fraction résiduelle ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le fer est principalement extrait dans la fraction réductible F2 (91%) et dans la fraction oxydable (7%) ce qui indique qu'il est en majeur partie contenu dans des oxy/hydroxydes et des sulfates de fer mais également en faible proportion dans une fraction oxydable tel que les sulfures ;
- le soufre est extrait dans la fraction F0 (9%), dans la fraction F1 (33%) et la fraction F2 (59%). Ceci indique qu'il est principalement inclus dans des sulfates, en accord avec les données de DRX ;
- l'arsenic est majoritairement extrait dans la fraction F1 (19%) et la fraction réductible F2 (78%), ce qui corrobore l'interprétation des données de DRX selon lesquelles l'arsenic est contenu dans la jarosite mais possiblement dans des oxy/hydroxydes.

ID échantillon	Fraction	AI	As	Bi	Са	Fe	Mg	Pb	S	Zn
		•	•	Co	ncentration (m	ng/kg)	•	•	•	•
	F0	13,2	0,9	<0,01	14,1	22,4	6,2	<0,01	482,0	<0,5
	F1	16	2 304	<0,04	9	642	5	0	1 843	1
	F2	3 050	9 650	9	34	30 208	466	91	3 314	9
	F3	95	3	2	12	2 293	200	1,1	24	7
	res	1 706	357	12	0,0	33	0	24	0	50
DEC2	Total fractions	3 174	11 958	11	68	33 165	677	92	5 663	17
RE33	Minéralisation totale	4 880	12 315	22	49	33 198	600	117	5 512	68
				Pro	portion relativ	/e (%)				
	F0	0,271%	0,008%	0,022%	20,623%	0,067%	0,915%	0,004%	8,511%	0,369%
	F1	0%	19%	0%	13%	2%	1%	0%	33%	2%
	F2	63%	78%	40%	49%	91%	69%	78%	59%	14%
	F3	2%	0%	7%	17%	7%	30%	1%	0%	10%
	Résidus* (%)	35%	3%	53%	-38%	0%	-13%	21%	-3%	74%

Tableau 41. Résultats d'extractions séquentielles pour les matériaux de la zone des résidus de four

* : Résidus% = (Minéralisation totale - Total fractions)/ Minéralisation totale

En conclusion, les données de DRX et d'extractions séquentielles indiquent que l'arsenic est principalement contenu dans la scorodite et la jarosite, mais également potentiellement dans des oxy/hydroxydes de fer et des sulfures.

8.3.6 *Transfert des éléments*

Les transferts liés au ruissellement de l'eau de pluie en surface et la lixiviation sont appréhendés par les tests de lixiviation. Les résultats de lixiviation sont présentés dans le Tableau 41, le Tableau 42, et le Tableau 43.

Les résultats de lixiviation au cours des extractions séquentielles montrent les éléments suivants :

- les éléments les plus mobilisables dans l'eau sont le calcium (21%) et le soufre (9%) ;
- les éléments peu mobilisables dans l'eau sont le magnésium (1%) l'aluminium (0,3%) le bismuth (0,02%) le fer (0,07%) et le zinc (0,4%) ;
- les éléments les moins mobilisables sont l'arsenic (0,008%) et le plomb (0,004%) ;
- sur les 1,2% d'arsenic présents dans l'échantillon seul 0,9 mg/kg sont mobilisés dans l'eau.

Les résultats de lixiviation issus des pack ISDI montrent les éléments suivants :

- parmi les éléments mesurés, les éléments ou composés lixiviables sont les suivants : Al, As, Ba, Cd, Ca, Co, Fe, Mg, Hg, Ni, Cu, Zn, S, Cl⁻, Fl⁻ et SO₄²;
- les éléments les plus mobilisables dans l'eau sont le calcium (26%) et le soufre (12%) ;
- les éléments peu mobilisables dans l'eau sont le nickel (4%) le zinc (1,5%), le cuivre (0,6%) et le magnésium (0,6%) ;
- les éléments les moins mobilisables sont l'arsenic (0,012%) et le fer (0,009%) et l'aluminium (0,031%);
- sur les 0,5% d'arsenic présent dans l'échantillon seul 0,6 mg/kg sont mobilisés dans l'eau.

Les deux types de lixiviation montrent des résultats similaires et dont les ordres de grandeurs sont les mêmes, à l'exception des éléments suivants : Al, Fe, Zn, Cu, Ni. Cela suggère que l'ensemble des matériaux de la zone de résidus de four se comporte de façon similaire à la lixiviation. Un tableau de synthèse décrit les paramètres et les résultats des tests de lixiviation pour l'arsenic.

Analyses	AI	As	Ca	Fe	Mg	Ni	Cu	Zn	S tot	Sb	Ag	Ва	Cd
Unité	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
RES1-4-6-8 (brut)	27 000	5 100	1 200	56 000	8 500	30	44	82	3 000	n.a.	<1,00	n.a.	<4,1
RES1-4-6-8 (éluat)	8,50	0,61	320	4,90	51	1,20	0,27	1,20	370	<0,00500	<0,0100	0,30	0,02
RES1-4-6-8 (% lixiviable)	0,031%	0,012%	26,67%	0,009%	0,60%	4,00%	0,61%	1,46%	12,33%	n.c.	n.c.	n.c.	n.c.
			Phénol (indice)										
Analyses	Fľ	Phénol	(indice)	Cľ	SO4 ²⁻	Со	Cr	Hg	Мо	Pb	Se	Au	Bi
Analyses Unité	FI [*] mg/Kg	Phénol mg	(indice) /Kg	Cľ mg/Kg	SO4 ²⁻ mg/Kg	Co mg/Kg	Cr mg/Kg	Hg mg/Kg	Mo mg/Kg	Pb mg/Kg	Se mg/Kg	Au mg/Kg	Bi mg/Kg
Analyses Unité RES1-4-6-8 (brut)	FI mg/Kg n.a.	Phénol mg	(indice) /Kg a.	Cľ mg/Kg n.a.	SO ₄ ²⁻ mg/Kg n.a.	Co mg/Kg <16,0	Cr mg/Kg 36	Hg mg/Kg n.a.	Mo mg/Kg n.a.	Pb mg/Kg 51	Se mg/Kg n.a.	Au mg/Kg <21,0	Bi mg/Kg <41
Analyses Unité RES1-4-6-8 (brut) RES1-4-6-8 (éluat)	FT mg/Kg n.a. 1,30	Phénol mg n. <5	(indice) /Kg a. ,00	CГ mg/Kg n.a. 11,00	SO ₄ ²⁻ mg/Kg n.a. 1400	Co mg/Kg <16,0 1,10	Cr mg/Kg 36 <0,0100	Hg mg/Kg n.a. 0,0029	Mo mg/Kg n.a. <0,00500	Pb mg/Kg 51 <0,0100	Se mg/Kg n.a. <0,0100	Au mg/Kg <21,0 <0,200	Bi mg/Kg <41 <0,400

Tableau 42. Proportion des éléments lixiviables (%) issus des essais de lixiviation de pack ISDI

N.B. : les paramètres organiques analysés dans le cadre des packs ISDI sont tous inférieurs aux LQ et ne sont donc pas traités ici. Ils sont toutefois annexés au rapport.

Tableau 43. Synthèse des paramètres et résultats de lixiviation des échantillons de résidus de four

Zone ciblée	Lit majeur du Grésillou	Zone des résidus de four
Echantillon	RES 3	RES1-4-6-8
Fraction granulométrique	2 mm	4 mm
Rapport L/S	100	10
Durée	16h	24h
[As] éluat (mg/l)	0,009	0,061
[As] brut (mg/kg)	12 315	5 100
[As] éluat (mg/kg)	0,94	0,61
Proportion d'arsenic lixiviable (% brut)	0,008%	0,012%

En conclusion, l'étude du transfert en arsenic dans les eaux de lixiviation montre que l'arsenic est peu mobilisable dans l'eau probablement en raison de la stabilité des phases dans lesquelles il se trouve (e.g. jarosite \pm oxy/hydroxydes de fer et sulfures).

8.3.7 Synthèse de la caractérisation des matériaux de la zone des résidus de four

Les caractéristiques physiques, chimiques, et lithologiques des matériaux de la zone des résidus de four sont présentés dans le tableau ci-dessous.

Tableau 44. Caractéristiques physiques, chimiques, et lithologiques des matériaux de la zone des résidus de four

	Zone des résidus de four
Granulométrie (proportions massiques)	69% de graves et blocs et 31% de fraction fine Fraction fine : - 47% 200-2000 μm - 26% 63-200 μm - 28% 0-63 μm
Lithologie/minéralogie	 Fraction fine : Sable et limon, et argile de composition minéralogique de roche silico-clastiques métamorphisées Phases potentiellement arséniées : oxy(hydro)-des de fer Sulfates (jarosite) Fraction grossière : Miraschistes + minéralisés avec présence locale de scorodite
	 Micaschistes ± mineralises avec presence locale de scorodite Phases arséniées et potentiellement arséniées : Scorodite (oxy(hydro)-des de fer Sulfures
Chimie/granulochimie	Concentration (vs. zone d'étude) : Pauvre en Ca, Cu, Bi Moyennes, As Echantillon global : [As] ≈ 4 863 mg/kg, stock d'arsenic réparti à moitié dans chacune des fractions (fine et grossière) Fraction fine : [As] ≈ 9 900 mg/kg 47% issue fraction 200-2000 µm ([As]≈4 100 mg/kg) 26% issu fraction 63-200 µm ([As]≈15 000 mg/kg) 28% issue fraction 0-63 µm([As]≈15 000 mg/kg)
Distribution des éléments	As distribué dans la scorodite, d'autre oxy/hydroxydes de fer et la jarosite et sulfures de fer
Origine	Terrain naturel et minerais
Transfert	As peu mobilisables dans l'eau : Lixiviation 1/100 : 0,008% de l'As de la matrice solide extrait dans l'eau (0,94 mg/kg ou 9 μg/l) Lixiviation 1/10 : 0,012% de l'As de la matrice solide extrait dans l'eau (0,61 mg/kg ou 61 μg/l) Part non négligeable d'As en F1 (19%)

8.4 Plateforme Marty

8.4.1 *Géomorphologie*

La plateforme Marty s'étend sur une surface de 1 500 m² en pied de versant entre les cotes 313 m NGF et 303 m NGF. La pente intégratrice du versant en amont immédiat de la plateforme Marty est de 50° (cf. Figure 52). Le bassin versant de la Plateforme Marty présente une pente moyenne de 23° situé en amont de la plateforme dont la pente moyenne est de 9° (pente intégratrice). Les zones de replats sont présentes au niveau des pistes, des bâtiments de Nartau et des anciennes carrières. Les sols dénudés représentent environ 25% de la surface du bassin versant. La végétation est éparse en amont du bassin versant et se densifie en aval à l'exception de la plateforme Marty.

Figure 52 : Cartographie des pentes du bassin versant de la Plateforme Marty

8.4.2 Dynamique des écoulements de surface

Le bassin versant et les écoulements de surface associés à la Plateforme Marty sont présentés en Figure 53.

La Plateforme Marty située en pied de versant reçoit l'ensemble des eaux de ruissellement de son propre bassin versant.

Figure 53 : Cartographie des écoulements de surface sur le bassin versant de la Plateforme Marty

8.4.3 Caractérisation lithologique macroscopique

Matériaux partiellement recouverts

Les matériaux partiellement recouverts incluent d'une part les matériaux situés sous les matériaux de recouvrement qui ont été investigués à 50 cm de profondeur et d'autre part les matériaux mis à nu lors de crue. Ils comprennent également les résidus de four issus de la zone des résidus de four mais ceux-ci- n'ont pas été investigués lors de cette étude (cf. étude MINELIS, 2015). Les matériaux mis à jour par les crues de 2018 et 2020 semblent constituer le socle de la plateforme Marty et possèdent des caractéristiques lithologiques communes. En effet, ils sont de couleur rouille, très oxydés et indurés, et les fractions granulométriques sont cimentées les unes aux autres (Figure 54).

Les résidus de four issus de la zone des résidus de four correspondent à des produits blanchâtres fortement arséniés d'un volume estimé à 150 m³.

Les matériaux investigués sont composés en moyenne de 75% de graves et blocs (38 à 86%) et 25% de matrice fine (< 2mm). Les blocs correspondent à des matériaux minéralisés très riches en oxydes. Au regard de l'abondance d'oxydes ces matériaux s'apparentent à du minerai. La matrice fine est de couleur rouille. Elle est relativement indurée et cimente les blocs entre eux pour les matériaux mis à nu par les crues, ce qui n'est pas le cas des matériaux situés juste sous les matériaux de recouvrement et qui sont boulants.

BRGM – La Villanière (11)Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Tableau 45. Caractéristiques physiques et lithologiques des échantillons de matériaux partiellement recouverts au droit de la plateforme Marty (muret mis à nu par la crue de mai 2020 et sondages)

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
MAR1	300	1487	83	sable limoneux brun/rouille	schiste minéralisé (oxydes, qtz, sulfures)
MAR2	333	1976	86	sable limoneux brun/rouille	schiste minéralisé (oxydes, qtz, sulfures)
MAR3	247	920	79	sable limoneux brun/rouille	schiste minéralisé (oxydes, qtz, pyrite)
MAR4	238	1640	87	sable limoneux brun/rouille	schiste minéralisé (oxydes, qtz, sulfures)
MAR5	1064	661	38	limon brun	quelques blocs friables couleur rouille
MAR12	625	1340	68	limon sableux brun	schiste oxydé et jaune, qtz
MAR13	232	1118	83	limon sableux brun	schiste minéralisé (scorodite, qtz)

Figure 54. Photographie d'échantillons représentatifs des matériaux partiellement recouverts au droit de la plateforme Marty. De gauche à droite, les matériaux mis à nu par la crue de 2020, les matériaux mis à nu par la crue de 2018 et les matériaux investigués à 50 cm de profondeur, sous les matériaux de recouvrement

Tas dematériaux

Les matériaux investigués sont composés en moyenne de 75% de fraction grossière (60 à 83%) contenant principalement des blocs et 25% de matrice fine (< 2mm). Les blocs correspondent à des schistes stériles ou minéralisés, à du minerai altéré à scorodite ou à des blocs calcinés. La fraction fine est composée de limons sableux.

Tableau 46. Caractéristiques physiques et lithologiques des échantillons des tas de matériaux au droit dela plateforme Marty

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
MAR6	553	1978	78	limon brun	schiste ±minéralisé (qtz, oxydes, pyrite, arsénopyrite)
MAR7	639	1404	69	limon légèrement sableux brun/jaune	micaschiste jaune ±oxydés
MAR8	515	1524	75	limon sableux brun/rouille	schiste minéralisé (qtz, oxydes)
MAR9	679	1547	69	limon sableux jaune/vert	schiste jaune/vert, minéralisé (qtz, oxydes, scorodite)
MAR10	577	850	60	lomon sableux brun clair	schistes dont qq jaune/vert
MAR11	556	1216	69	limon sableux brun légèrement rouille	schiste rouille à jaune
MAR28	370	1826	83	limon brun	qtz, schiste jaune oxydé

Figure 55. Photographies des tas matériaux de la plateforme Marty ; en haut : illustration des tas ; au milieu : échantillons tamisés représentatifs de chaque zone ; en bas : blocs minéralisés (Abréviations : Qtz : quartz, Py : pyrite, Asp : arsénopyrite, Sc : scorodite).

Matériaux de recouvrement

Les matériaux de recouvrement sont des matériaux d'une épaisseur de 50 cm environ. Ils sont composés en moyenne de 38% de fraction grossière (22 à 68%) et de 62% de matrice fine (< 2mm). Les blocs correspondent à des calcaires et la fraction fine à des limons bruns végétalisés.

Tableau 47. Caractéristiques physiques et lithologiques des échantillons des matériaux de recouvrement
au droit de la plateforme Marty

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
MAR14	485	273	36	limon brun clair	gravier calcaire
MAR15	286	141	33	limon brun clair	gravier calcaire
MAR16	269	280	51	limon brun clair	gravier calcaire
MAR17	235	172	42	limon brun	schiste émoussé = sédiment
MAR18	305	211	41	limon brun clair	gravier calcaire
MAR19	326	93	22	limon brun clair	gravier calcaire
MAR20	230	196	46	limon brun clair	schiste émoussé = sédiment
MAR21	285	128	31	limon brun clair	gravier calcaire
MAR22	276	104	27	limon brun clair	gravier calcaire
MAR23	288	122	30	limon brun clair	gravier calcaire
MAR24	342	174	34	limon brun clair	gravier calcaire
MAR25	245	162	40	limon brun clair	gravier calcaire
MAR26	238	128	35	limon brun clair	gravier calcaire
MAR27	277	142	34	limon brun clair	gravier calcaire
MAR29	144	310	68	limon brun	bloc gréseux

Figure 56. Photographie d'échantillons des matériaux de couverture de la plateforme Marty

8.4.4 *Caractérisation chimique et granulochimique*

8.4.4.1 Chimie globale

Les résultats sont présentés dans le Tableau 49, le Tableau 50 et la Figure 57. Ils incluent des échantillons de MINELIS (PFM1 et PFM2, localisés dans la Figure 58) analysés en laboratoire qui ont été mis à jour par la crue de 2018.

Dans la Figure 57, les médianes des concentrations en métaux des échantillons de la plateforme Marty sont normalisées à la concentration moyenne de l'ensemble du site d'étude, définie comme la moyenne des médianes de chaque zone d'intérêt. Cela permet d'illustrer des appauvrissements et des enrichissements relatifs par rapport à l'ensemble du site d'étude. De plus, des valeurs de bruits de fond réalisés sur le domaine géologique de la zone axiale, là où se trouve la plateforme Marty, y sont ajoutées à des fins de comparaison. Les données provenant de deux méthodes analytiques différentes (matériaux investigués : pXRF ; bruit de fond : ICP), la comparaison n'est réalisée que sur les éléments dont les corrélations entre les deux méthodes ont été réalisées et sont bonnes.

Matériaux de recouvrement

Globalement, et comparativement aux matériaux investigués sur l'ensemble du site d'étude, les matériaux de couverture de la plateforme Marty sont caractérisés par :

- de très faibles teneurs en S (<631 mg/kg ; med=117 mg/kg) et As (<929 mg/kg ; med=45 mg/kg) ainsi qu'en Fe (<6,7 % ; med=2,3 %), Cu (<88 mg/kg ; med=50 mg/kg) et Bi (<36 mg/kg ; med=14 mg/kg) ;
- de fortes teneurs en Ca (med=3,8%).

Cette composition illustre le caractère non ou faiblement impacté de ces matériaux d'apport, ayant une composante calcaire importante, en accord avec les observations macroscopiques.

Matériaux partiellement recouverts

Globalement, et comparativement aux matériaux investigués sur l'ensemble du site d'étude, les matériaux situés sous les matériaux de couverture de la plateforme Marty sont caractérisés par :

- de faibles teneurs en Ca, Mn, Ni, Cu, Zn et Pb ;
- de fortes teneurs en S, Fe, As, Se et Bi :
 - les teneurs en S varient de 0,4% à 1,7%, avec une médiane de 1,2%;
 - o les teneurs en Fe varient de 7,7% à 17,3%, avec une médiane de 12,8% ;
 - les teneurs en As varient de 0,5 à 7,2%, avec une médiane de 5,3%;
 - o les teneurs en Se varient de 8 à 72 mg/kg, avec une médiane de 54% ;
 - les teneurs en Bi varient de 38 mg/kg à 191 mg/kg, avec une moyenne de 133 mg/kg ;
- globalement les matériaux issus des sondages, situés à la limite entre les matériaux de couverture et les matériaux de sous couverture, ont des concentrations relativement moins fortes en S, Fe, As, Se et Bi.

Les résidus de four issus de la zone des résidus de four indiquent des teneurs en As pouvant atteindre 16,8% (résultats laboratoire ; étude MINELIS, 2015).

Tas de matériaux

Les matériaux issus des tas ont des spectres multi élémentaires semblables à ceux des matériaux sous couverture à l'exception de l'As (med=0,6%), du Se (med=4 mg/kg) et du Pb (med=24 mg/kg) qui ont des teneurs relatives moyennes. Cela indique que les matériaux issus des tas et de sous couverture ont une origine similaire mais que les matériaux issus des tas sont moins concentrés en As, Se et Bi et correspondraient à des minerais moins enrichis.

Les échantillons issus des matériaux mis à nu par la crue de 2018 (données laboratoires MINELIS) ont des spectres élémentaires semblables à ceux des matériaux mis à jour par la crue de 2018, à l'exception de deux éléments (Ca et Cr) ce qui indique qu'ils sont de même nature.

Comparativement au bruit de fond de l'unité géologique de la zone axiale, les matériaux, hors matériaux de recouvrement, sont :

- enrichis en S, Fe, As, et Bi ;
- pauvres en Ca et Ni;
- proches ou dans la même gamme de concentration pour les autres éléments comparables.

Figure 57. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la plateforme Marty (PM ; la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)

Les résultats laboratoire étant moins nombreux que les résultats au pXRF et systématiquement représentés par un équivalent au pXRF corrigé en fonction des analyses laboratoire, ils n'appellent pas d'autres commentaires. Toutefois, pour les éléments non mesurés au pXRF, les éléments suivants sont mis en évidence :

- au regard des concentrations en sulfates et des concentrations en S total, il est montré que le S contenu dans les sulfates (SO4²⁻ seulement, n'inclus pas jarosite) représente en moyenne 6% du S total, contre 94% dans les sulfures ;
- hormis pour le chrome, la quantité d'élément dissous par minéralisation régale représente plus de 80% de la quantité extraite par minéralisation totale ;
- les analyses de l'or montrent des teneurs détectées mais non quantifiées (i.e. situées entre la LQ et la LD) après minéralisation totale. A titre indicatif, les concentrations détectées sont significatives, de 6,7 à 13 mg/kg ou g/t pour les matériaux de sous couverture ou de tas de matériaux ;
- les analyses de l'or sont quantifiées pour PFM1 et PFM2 issus des données MINELIS (après minéralisation à l'eau régale) et indiquent des concentrations de 0,6 et 1 mg/kg.

Tableau 48. Chimie des matériaux de la plateforme Marty (résultats pXRF corrigés en mg/kg)

ID échantillon	Zone d'intérêts	Mg	AI	Si	S	к	Ca	Cr	Mn	Fe	Co*	Ni	Cu	Zn	As	Se	Mo*	Ag*	Cd*	Sn	Sb	Ва	Hg*	Pb	Bi
MAR1	PM - Matériaux sous couverture	39 735	32 643	67 269	10 150	7 451	292	108	163	128 924	366	21	64	49	53 911	54	7	138	27	62	66	317	45	13	147
MAR2	PM - Matériaux sous couverture	60 764	55 170	118 785	17 306	9 461	930	52	201	166 089	146	8	66	62	58 319	72	2	102	10	50	62	432	16	6	133
MAR3	PM - Matériaux sous couverture	62 449	47 420	96 348	16 283	10 165	280	63	111	142 187	142	8	39	42	57 246	56	2	96	10	14	74	508	18	6	191
MAR4	PM - Matériaux sous couverture	75 622	37 195	64 731	11 787	7 311	2 487	71	150	173 162	144	8	77	46	72 555	70	2	8	8	60	16	1 266	16	6	189
MAR5	PM - Matériaux sous couverture	29 494	45 259	110 653	15 000	10 378	175	79	376	77 067	128	17	30	55	16 833	19	4	72	16	36	44	605	14	14	75
Mediane	PM - Matériaux sous couverture	60 764	45 259	96 348	15 000	9 461	292	71	163	142 187	144	8	64	49	57 246	56	2	96	10	50	62	508	16	6	147
MAR6	PM - Tas de matériaux	14 690	68 945	147 339	13 744	17 772	10 017	81	235	67 013	122	27	137	94	3 628	5	4	13	18	24	34	757	10	44	16
MAR7	PM - Tas de matériaux	14 912	76 584	124 747	34 115	27 363	139	84	65	102 842	144	8	96	23	6 120	4	4	74	16	40	55	961	10	25	34
MAR8	PM - Tas de matériaux	14 030	59 939	106 101	19 336	18 767	464	87	168	109 750	144	8	91	70	9 749	4	4	78	14	52	48	1 063	10	30	59
MAR9	PM - Tas de matériaux	10 410	60 493	108 020	44 203	22 868	516	72	60	93 062	136	8	68	19	3 699	2	4	72	16	45	71	686	10	15	173
MAR10	PM - Tas de matériaux	18 829	62 936	107 433	23 933	18 202	4 999	57	316	127 466	148	10	180	284	14 398	14	4	80	12	35	54	905	12	70	57
MAR11	PM - Tas de matériaux	19 913	70 933	133 071	1 965	16 012	14 741	96	2 763	91 230	136	121	198	352	8 919	7	4	11	16	39	48	833	12	109	69
MAR12	PM - Tas de matériaux	29 775	60 344	112 179	7 963	17 156	13 909	79	284	77 451	301	21	64	67	18 160	11	10	189	33	37	47	684	37	31	38
MAR13	PM - Tas de matériaux	21 903	73 772	142 118	3 766	17 512	25 253	90	771	63 794	273	43	570	148	5 662	8	12	145	43	58	95	680	27	55	56
MAR31B	PM - Tas de matériaux	10 040	11 154	17 133	30 584	6 528	497	37	1 021	214 322	107	5	149	3	5 867	1	14	52	7	89	14	1 073	5	3	9
MAR32B	PM - Tas de matériaux	4 080	16 881	57 789	67 899	12 937	372	37	413	116 706	97	6	224	4	1 646	2	14	49	10	54	20	333	5	3	13
MAR31	PM - Tas de matériaux	6 429	47 826	141 579	1 989	12 438	35 472	28	259	36 438	52	15	111	49	1 013	1	3	37	11	30	22	329	5	23	8
MAR33B	PM - Tas de matériaux	11 588	26 489	52 481	6 871	11 119	503	89	124	121 833	208	6	153	124	20 968	2	2	41	8	53	17	640	8	119	22
MAR33	PM - Tas de matériaux	4 284	33 259	68 696	21 836	16 012	17	82	61	95 003	92	6	102	5	5 943	7	14	46	10	50	20	382	7	20	13
MAR34	PM - Tas de matériaux	7 787	8 628	33 170	11 177	4 115	18	41	80	134 857	109	6	86	33	21 668	38	3	9	9	13	18	183	9	3	11
MAR35B	PM - Tas de matériaux	5 157	1 533	1 828	40 278	2 942	79 204	44	524	50 546	968	9	191	60	6 524	3	11	59	15	21	29	64	11	16	21
MAR36	PM - Tas de matériaux	5 494	45 679	130 400	1 144	13 109	17 022	31	824	40 248	58	37	97	96	1 398	2	3	37	12	16	23	372	6	35	14
MAR36B	PM - Tas de matériaux	13 861	31 141	51 581	21 621	6 124	414	98	194	269 972	87	4	589	37	11 013	19	1	46	5	67	10	320	4	3	66
Mediane	PM - Tas de matériaux	11 588	47 826	107 433	19 336	16 012	516	79	259	95 003	136	8	137	60	6 120	4	4	49	12	40	29	680	10	25	22
MAR37	PM - couverture	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	71	325	18 457	47	23	60	55	23	2	9	13	14	34	27	1 078	6	21	16
MAR14	PM - couverture	10 094	71 575	179 456	118	13 675	55 400	94	380	21 711	74	21	52	53	38	3	6	60	22	30	44	617	10	24	14
MAR15	PM - couverture	9 655	67 117	173 501	116	13 104	78 422	52	378	20 565	74	22	61	53	40	2	6	64	24	32	44	455	10	22	28
MAR16	PM - couverture	12 302	79 073	186 533	109	17 143	42 310	71	402	29 076	84	18	50	62	793	2	6	66	22	28	42	561	10	24	16
MAR17	PM - couverture	14 896	75 874	166 908	368	15 503	22 859	108	640	35 376	92	47	66	110	535	2	6	62	20	24	38	605	8	28	14
MAR18	PM - couverture	7 118	61 504	179 519	120	13 576	67 591	62	276	17 289	66	16	88	43	50	2	6	68	22	30	44	447	10	24	14
MAR19	PM - couverture	10 087	82 842	229 539	104	17 183	15 074	80	389	22 905	74	16	17	52	25	2	6	62	22	79	42	503	8	27	14
MAR20	PM - couverture	11 984	86 497	199 773	122	15 042	16 155	84	535	30 963	88	26	34	80	49	2	7	64	22	30	42	589	8	15	14
MAR21	PM - couverture	10 911	75 382	200 770	110	14 787	39 757	93	355	22 231	74	15	46	55	31	2	6	64	22	30	42	597	8	24	14
MAR22	PM - couverture	10 849	77 039	192 572	112	14 647	37 472	72	378	23 302	76	27	30	59	43	2	6	62	22	30	42	546	8	22	14
MAR23	PM - couverture	9 691	76 167	191 770	268	14 998	39 426	88	394	23 656	180	23	51	60	48	6	14	146	52	70	100	470	21	23	36
MAR24	PM - couverture	10 137	78 176	194 839	114	14 966	29 638	89	445	23 441	74	20	45	57	26	2	6	68	22	30	42	510	8	22	14
MAR25	PM - couverture	8 856	76 226	189 689	118	14 797	31 454	95	427	23 849	78	23	50	65	45	2	6	62	22	30	42	580	8	27	14
MAR26	PM - couverture	8 903	79 185	200 799	114	15 838	29 329	76	455	25 896	80	26	51	72	34	2	6	62	22	25	42	536	8	26	14
MAR27	PM - couverture	9 927	74 194	195 604	112	14 055	40 077	90	348	19 966	70	17	21	50	23	2	6	62	22	30	42	454	8	20	14
MAR28	PM - couverture	18 125	50 414	88 806	25 319	18 035	842	105	88	105 670	140	8	99	24	6 328	4	4	74	14	49	28	3 705	10	32	37
MAR29	PM - couverture	26 822	75 378	134 754	631	13 839	37 946	105	3 247	67 100	122	111	94	353	829	2	4	70	18	24	34	600	10	86	16
MAR39	PM - couverture	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	64	390	20 141	58	30	43	54	370	2	5	15	16	22	32	1 289	6	23	19
MAR38	PM - couverture	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	51	370	21 372	82	11	45	73	64	3	6	21	23	31	44	1 734	9	22	27
Mediane	PM - couverture	10 116	76 020	190 730	117	14 882	37 709	84	389	23 302	76	22	50	57	45	2	6	62	22	30	42	580	8	24	14
Maximum	Plateforme Marty	75 622	86 497	229 539	67 899	27 363	79 204	108	3 247	269 972	968	121	589	353	72 555	72	14	189	52	89	100	3 705	45	119	191
Mediane	Plateforme Marty	11 250	62 220	131 736	5 318	14 717	14 907	79	370	63 794	97	17	66	55	1 646	2	6	62	16	32	42	589	10	23	16
Moyenne	Plateforme Marty	17 674	56 865	128 902	11 866	13 867	20 828	75	473	74 949	140	22	107	77	10 113	11	6	64	18	39	41	714	11	28	43
Minimum	Plateforme Marty	4 080	1 533	1 828	104	2 942	17	28	60	17 289	47	4	17	3	23	1	1	8	5	13	10	64	4	3	8
Mediane	Bâtiments de Nartau	16 477	69 970	125 270	1 546	15 937	21 843	88	664	61 055	127	34	143	98	6 648	6	5	43	17	28	52	606	13	85	20
Mediane	Paléosédiments	16 269	85 542	191 816	134	18 355	2 978	97	811	45 048	109	48	70	132	409	2	6	66	20	33	40	733	10	26	16
Mediane	Sédiments du Grésillou	18 182	101 168	251 067	92	22 362	2 736	115	688	46 929	55	50	64	125	478	1	3	33	11	26	20	800	5	19	8
Mediane	Verse annexe de Ramèle	40 426	67 357	125 805	3 056	15 043	41 836	69	1 046	89 158	136	56	1 502	221	8 951	10	4	19	18	51	103	651	12	112	156
Mediane	Verse de Nartau	57 456	47 048	98 806	9 162	17 362	138	107	273	95 690	124	10	55	26	26 573	16	4	78	12	43	65	843	14	18	73
Mediane	Verse Ramèle	15 980	69 117	156 150	900	18 731	3 988	96	381	48 954	101	32	179	83	1 919	2	4	34	16	40	49	738	10	45	31
Mediane	Zone de résidus de four	17 667	86 652	178 840	3 054	18 437	931	99	712	54 475	111	42	74	94	2 745	4	6	66	19	27	36	767	10	43	16
Moyenne des médiane de chaque zone d'intérêts	Site d'étude	24 213	73 634	157 436	2 908	17 618	11 170	94	618	63 138	107	36	269	104	6 171	5	5	50	16	35	51	716	10	46	42

*: 80% des concentrations mesurées sont des valeurs <LQ

Les concentrations inférieures à la LQ ont été mises à LQ/2 et les certaines données représentent une moyenne de trois mesures triplicat par échantillon

Analyses	Carbonates totaux	%S sulfates solubles ⁴	%S sulfures⁴	Sulfates solubles	Mg	AI	S tot	Са	Cr	Fe	Со	Ni	Cu	Zn	As	Ag	Cd	Pb	Bi	Au (LQ)	Au (LD) ¹
Unité	g/Kg	%	%	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
MAR1-5B	6	2,0%	98,0%	1 200	3 300	9 800	20 000	2 600	13	96 000	<16,0	<20,0	110	<39	33 000	<0,99	<3,9	<20,0	200	<20,0	13²
MAR1	2	3,0%	97,0%	890	3 900	14 000	10 000	600	21	150 000	<16,0	<19,0	180	39	43 000	<0,97	<3,9	<19,0	130	<19,0	<4,5
MAR12	14	8,7%	91,3%	1 200	2 900	20 000	4 600	9 200	27	89 000	<16,0	<20	62	66	24 000	<0,99	<4,0	36	61	<20	<4,5
MAR13	23	16,7%	83,3%	1 200	6 400	26 000	2 400	17 000	33	63 000	<16,0	23	140	84	5 000	<0,99	<4,0	43	51	<20	<4,5
MAR2-3	3	2,2%	97,8%	1 100	3 300	14 000	17 000	430	18	130 000	<16,0	<20,0	<40	<40	52 000	<1,00	<4,0	<20,0	98	<20,0	7,7²
MAR6-11B	29	1,8%	98,2%	1 500	3 000	25 000	28 000	9 600	28	89 000	31	25	110	74	38 000	<0,99	<4,0	<20,0	<40	<20,0	6,7²
MAR6-7-8-9-10-11-28	16	8,5%	91,5%	3 300	3 100	18 000	13 000	8 800	21	94 000	<16,0	<20,0	100	100	7 900	5	<4,0	54	77	<20,0	7,1²
MAR23	98	n.c.	n.c.	9	4 700	29 000	<330	48 000	34	22 000	<16,0	<20,0	<39	50	49	<0,98	<3,9	<20,0	<39	<20,0	<4,4
% extrait (régale vs. totale) ³	n.c.	n.c.	n.c.	n.c.	n.c.	81%	95%	n.c.	38%	88%	78%	90%	89%	83%	82%	96%	88%	89%	88%	n.c.	n.c.
PF M1 (données MINELIS)	n.a.	4,2%	95,8%	1 870	5 550	13 100	14 700	10 500	19	166 000	2	31	131	103	40 100	<5.18	1	58	147	1	n.c.
PF M2 (données MINELIS)	n.a.	11,3%	88,7%	2 820	6 390	16 800	8 300	17 600	22	91 100	20	34	188	136	14 700	<5.00	1	42	74	2	n.c.

Tableau 49. Chimie des matériaux de la plateforme Marty (résultats du laboratoire après minéralisation à l'eau régale)

n.c. : non calculable ou non concerné ; 1 : résultats entre la limite de détection et la limite de quantification ; 2 : issue de la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation à l'eau régale et la minéralisation totale ; 4 : les proportions de S contenu dans les sulfates et les sulfates sont calculées sur la base des concentrations en sulfates déterminé par le laboratoire, selon les hypothèses suivantes : les sulfates sont représentés par le composé SO42- et tout le S non contenu dans les sulfates solubles est contenu dans les sulfates de fer type jaoriste n'étant pas inclus dans les sulfates solubles, le % de sulfures peut être majoré.

Client : BRGM

Site :Mine de Nartau et Verse de Ramèle (Secteur de Salsigne)Titre :Localisation des résultats des investigations sur la plateforme Marty

Version : b

Figure 58. Cartographie des concentrations en arsenic au droit de la plateforme Marty (MAR13 et MAR12 sont des mesures sous la couverture de 50 cm)

Zone d'intérêt

Zone d'investigation

Concentration en arsenic

6000 - 15000

15000 - 40000

40000 - 72555

Dernière modification : 10/05/21

La cartographie des impacts en arsenic indique que les plus fortes concentrations sont retrouvées au droit des matériaux situés sous les matériaux de recouvrement et dans une moindre mesure au droit des tas de matériaux. Elle permet également de dimensionner latéralement l'étendue des matériaux de recouvrement qui n'incluent probablement pas les échantillons MAR16, MAR17, MAR39 et MAR39 pour lesquels les concentrations en As sont comprises entre 370 et 829 mg/kg contre 23-64 mg/kg pour les matériaux de recouvrement.

En conclusion, les données chimiques et lithologiques indiquent que les matériaux de la plateforme Marty sont caractérisés par :

- sous les matériaux de recouvrement, des matrices fine et grossière de roches minéralisées riches en oxydes, avec des teneurs significatives en S, Fe, As, Bi et Au (éléments composant le minerai);
- au droit des tas de matériaux, une association de limons et blocs ayant une signature similaire aux matériaux précités mais dont les concentrations en As et Bi sont plus faibles. Ces matériaux correspondent à du minerai probablement riche en or, mais également à des roches stériles ;
- des matériaux de recouvrement sains végétalisés comportant quelques blocs de calcaires.

8.4.4.2 Contribution des fractions granulométriques fines et grossières

La fraction granulométrique grossière (i.e. graves et blocs ; >2 mm) des matériaux de la plateforme Marty (hors matériaux de recouvrement) représente environ 73% de la masse des échantillons prélevés (Tableau 45, Tableau 46 et Tableau 47).

Des échantillons composites de blocs ont été prélevés d'une part au droit du muret mis à nu par la crue de 2020 (MAR1-5B) et d'autre part au droit des tas de matériaux (MAR6-28B). En parallèle, la fraction fine de ces échantillons a également été caractérisée sur l'ensemble de ces zones investiguées. Ainsi, des concentrations d'« échantillons représentatifs » des deux zones précitées ont été calculées en pondérant par la masse des fractions afin d'estimer la contribution de chacune des fractions sur les concentrations en As, S et Fe (Figure 59).

Figure 59. Contribution chimique des fractions fines et grossière des matériaux de la plateforme Marty

La Figure 59 met en évidence :

- que les paternes des histogrammes entre Fe et As sont similaires pour l'échantillon composite MAR1-5, ce qui suggère que les matériaux issus des deux fractions granulométriques ont une origine commune. A l'inverse, l'échantillon composite des tas de matériaux suggère une origine différente entre la faction fine et la fraction grossière ;
- pour les matériaux mis à nu par la crue de 2020 :
 - que la fraction grossière est moins concentrée en Fe (x0,7) et en As (x0,6) que la fraction fine ;
 - que la fraction grossière est plus concentrée en S (x1,4) ;
- pour les matériaux issus des tas:
 - que les concentrations en Fe et S sont du même ordre entre la fraction fine et la fraction grossière ;
 - que la fraction grossière est largement plus concentrée en As (x5) que la fraction fine.

Cela indique que la majeure partie de l'arsenic des matériaux mis à nu par la crue est contenue dans la fraction grossière, en particulier pour les matériaux des tas de matériaux.

8.4.4.3 Chimie des fractions granulométriques < 2 mm

La fraction fine d'un échantillon composite situé dans le lit majeur du Grésillou (MAR2-3) a fait l'objet d'analyses granulochimiques consistant en l'analyse chimique des fractions granulométriques suivantes :

- 0-63 µm ;
- 63-200 µm ;
- 200-2000 µm.

Les résultats sont présentés dans le Tableau 50 et la Figure 60. Ils montrent que :

- les concentrations en les éléments mesurés sont plus concentrées dans les fractions fines que dans la fraction 200-2000 μm. Pour l'échantillon analysé, l'arsenic est 1,8 fois plus concentré dans la fraction 0-63 μm et 2 fois plus concentrée dans la fraction 63-200 μm que dans la fraction 200-2000 μm.
- la fraction la moins fine (200-2000 μm) a une masse relative qui représente 60% de la masse totale, alors que des autres fractions ont des masses relatives de 17% et 23% pour les fractions 0-63 et 63-200 μm, respectivement.

Les concentrations et les masses relatives de chaque fraction évoluant différemment, des contributions en arsenic de chaque fraction sur la concentration de la fraction globale ont été calculées par pondération (Figure 50). Les résultats montrent que plus la fraction est fine, moins elle contribue au stock d'arsenic dans l'échantillon. En effet, de la fraction la moins fine à la plus fine leur contribution en arsenic est respectivement de 43, 43 et 23%.

En conclusion, l'étude de la distribution en arsenic dans les différentes fractions granulométriques montre que :

 pour les matériaux des issus des tas: la majeure partie du stock d'arsenic est contenue dans la fraction grossière >2 mm;

- pour les matériaux mis à nu par la crue de 2020 :
 - la majeure partie du stock d'arsenic est contenu dans la fraction grossière >2 mm ;
 - o dans la fraction 0-2 mm, la majeure partie de l'arsenic est contenue dans la fraction <200 μm, plus mobilisable et lixiviable. Rappelons toutefois que les matériaux sont relativement indurés et cimentés, ce qui limite leur mobilité et les surfaces d'échange lors des processus de lixiviation.

Tableau 50. Granulochimie des matériaux du muret mis à nu au droit de la plateforme Marty

ID échantilon	Fraction	Masse relative	[As]	[As]fraction fine/[As]fraction grossière	Q[As] relatif	Q[As]	carbonates totaux	sulfates	Au	AI	Ag	As	Bi	Cd	Са	Co	Cr tot	Fe	Mg	Ni	Pb	Cu	Zn	S tot
MAR2-3	0-2000	100%	52 000	n.c.	100%	52 000	3	1 100	<20,0	14 000	<1,00	52 000	98	<4,0	430	<16,0	18	130 000	3 300	<20,0	<20,0	<40	<40	17 000
MAR2-3	200-2000	60%	37 816	1,0	43%	22 576	3	600	<20,0	12 074	<1,00	37 816	27	<4,0	30	<16,0	14	85 628	2 626	<20,0	<20,0	<40	<40	15 362
MAR2-3	63-200	23%	76 000	2,0	34%	17 556	3	1 200	<20,0	16 000	<1,00	76 000	190	<4,1	890	<16,0	23	200 000	4 000	<20,0	31	59	44	19 000
MAR2-3	0-63	17%	69 000	1,8	23%	11 868	3	2 700	<19,0	18 000	<0,94	69 000	220	<3,8	1 200	<15,0	25	190 000	4 700	20	55	85	56	20 000

* : la concentration en As pour la fraction 200-2000 microns est déduite par calcul du bilan de concentation massique à l'aide notamment des masses relatives ; en présence de LQ les calculs ont considéré la LQ/2

Figure 60. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction.

8.4.5 *Minéralogie et distribution des éléments*

La minéralogie et la distribution des éléments sont appréhendées par les analyses DRX et d'extractions séquentielles. Les échantillons analysés correspondent aux échantillons de fraction fine et grossière des matériaux mis à nu par la crue de 2020 et des tas de matériaux : respectivement : MAR6-11B, MAR2-3, MAR1-5B et MAR6-7-8-9-10-11-28.

8.4.5.1 Résultats d'analyses DRX

Les résultats des analyses DRX sont fournis dans le Tableau 51 et la Figure 61. Les analyses DRX étant moins précises que les analyses ICP, des bilans massiques ont été calculés pour l'arsenic, le soufre et le fer, sur la base des proportions modales puis comparés aux analyses ICP (Tableau 51).

Matériaux mis à nu par la crue de 2020

Les matériaux mis à nu par la crue de 2020 comportent entre 92 et 94% de silicates dont les principaux sont le quartz (50-54%), les mica blanc (muscovite ; 28-39%), pour la fraction fine uniquement 11% de feldspath, et dans une moindre mesure les argiles (kaolinite et montmorillonite ; 0,1-0,3%), et des chlorites (0,3-3,6%). Ces compositions minéralogiques indiquent que ces matériaux dérivent de roches silico-clastiques, de type quartzite et/ou pelite.

Les autres phases minérales correspondent :

- pour la fraction fine, à des sulfates : la jarosite un sulfate de fer pouvant contenir de l'arsenic, elle est retrouvée dans 2 des 3 échantillons de fraction fine (1-5,6%).
- pour la fraction grossière :
 - à des oxydes de fer : ferreux/ferrique (Fe²⁺ et Fe³⁺; titanomagnétite ; 1,3%) ou ferrique (Fe³⁺; hématite ; 0,9%);
 - à des sulfures : la chalcopyrite (0,1-0,8%)
 - à des sulfates : la jarosite un sulfate de fer pouvant contenir de l'arsenic (3,9%).

Aucune phase arséniée n'est mise en évidence par les résultats d'analyse DRX, or sur la base des concentrations déterminée à l'ICP, 6,1% et 6,4% d'arsenic sont présent dans les échantillons de fraction fine et grossière, respectivement. Ce défaut de bilan en As s'explique soit :

- par la présence d'As dans les phases potentiellement porteuse d'As (oxydes de fer, sulfures, sulfates). Leurs proportions sont néanmoins trop faible pour expliquer le défaut de bilan en As. Les bilans déficitaires en As, Fe et S, ainsi que l'omniprésence d'oxydes rouille observé macroscopiquement suggère la présence de sulfures altérés contenant de l'As, non quantifiés.
- 2) et/ou par l'absence de détection de phases arséniés ;
- 3) et /ou par un biais d'échantillonnage ou une hétérogénéité de l'échantillon.

Matériaux issus des tas

Les matériaux issus des tas comportent entre 81 et 91% de silicates dont les principaux sont le quartz (44-50%), les mica blanc (muscovite ; 36-40%), et dans une moindre mesure les argiles (kaolinite ; 0,3-1,2%), et pour la fraction grossière uniquement les chlorites (0,6%). On note aussi la présence de carbonates (calcite ;15%) dans l'échantillon de fraction grossière.

Ces compositions minéralogiques indiquent que ces matériaux dérivent de roches silicoclastiques, ainsi que de calcaire en ce qui concerne la fraction grossière.

Les autres phases minérales correspondent :

- pour la fraction fine, à des sulfates : la jarosite un sulfate de fer pouvant contenir de l'arsenic, elle est retrouvée dans 2 des 3 échantillons de fraction fine (1-5,6%).
- pour la fraction grossière :
 - à des oxydes de fer : ferreux/ferrique (Fe²⁺ et Fe³⁺; titanomagnétite ; 1,6%) ou ferrique (Fe³⁺; goethite ; 0,1%);
 - à des sulfures : la chalcopyrite (0,1%)
 - à des sulfates : la jarosite un sulfate de fer pouvant contenir de l'arsenic (2,2%).

Aucune phase arséniée n'est mise en évidence par les résultats d'analyse DRX. Or sur la base des concentrations déterminées à l'ICP, 0,9% et 3,8% d'arsenic sont présents dans les échantillons de fractions fine et grossière, respectivement. Ce défaut de bilan en As s'explique par :

- l'absence de détection de phases arséniés telles que l'arsénopyrite et la scorodite, toutes deux observées macroscopiquement. Pour l'échantillon de fraction grossière, le bilan en S et Fe, suggère qu'elle contiendrait plus de sulfures de type arsénopyrite, ou de la scorodite.
- et/ou la présence de trace d'As dans des phases potentiellement arséniées (sulfates, sulfures, oxydes de fer). Pour l'échantillon de fraction fine, on note en effet la présence de jarosite en proportions significatives qui pourrait expliquer en grande partie les concentrations observées en As ;
- 3) et/ou par un biais d'échantillonnage ou une hétérogénéité de l'échantillon.

On note que les minéralogies des matériaux mis à nu pas la crue et des matériaux issus des tas sont similaires ce qui corrobore les données chimiques (spectre multi-élémentaires parallèles).

Tableau 51. Minéralogie des matériaux de la plateforme Marty et bilan de concentration en arsenic, fer et soufre

Minéral	Formule	Poids moléculaire du minéral (g)	% massique As	% massique Fe	% massique S	MAR6-7-8- 9-10-11- 28	MAR6- 11B	MAR2-3	MAR1-5B
Silicates						91	81	92	94
Quartz	SiO ₂					50	44	50	54
Groupe micas (aluminosilicate)						40	36	28	39
Muscovite	KAI ₂ (AlSi ₃ O ₁₀)(OH) ₂					39,8	36	27,6	39,3
Séricite	KAI ₂ (AlSi ₃ O ₁₀)(OH) ₂					0	0	0	0
Allurgite	K(Al,Mn ³⁺) ₂ (AlSi ₃ O ₁₀)(OH) ₂					0	0	0	0
Phengite	KAI _{1.5} (Mg) _{0.5} (AI _{0.5} Si _{3.5} O ₁₀)(OH) ₂					0	0	0	0
Groupe chlorites (aluminosilicate)						0,0	0,6	3,6	0,3
Chlorite	(Fe,Mg,Al) ₆ (Si, Al)4O ₁₀ (OH) ₈	1013,6		11%		0	0,6	3,6	0,3
Clinochlore	Mg ₅ Al(AlSi ₃ O ₁₀)(OH) ₈					0	0	0	0
Chamosite	(Fe ²⁺ ,Mg,Al,Fe ³⁺) ₆ (Si,Al) ₄ O ₁₀ (OH,O) ₈	780		22%		0	0	0	0
Groupe feldspaths (aluminosilicate)						0,0	0,0	10,6	0,0
Feldspath						0	0	1,2	0
Albite	Na(AlSi₃O ₈)					0	0	9,4	0
Ca-Na-Feldspath	(Ca,Na)(Al ₂ Si ₂ O ₈)					0	0	0	0
Na-feldspath	Na(Al2Si2O8)					0	0	0	0
Sr-Al feldspath	Sr/Ca/Na(Al2Si2O8)					0	0	0	0
Groupe argiles (aluminosilicate)						1,2	0,3	0,3	0,1
Montmorillonite	(Na, Ca) _{0,33} (Al,Mg) ₂ (Si ₄ O ₁₀)(OH) ₂ .nH2O					0	0	0,3	0
Kaolinite	Al ₂ (Si ₂ O ₅)(OH) ₄					1,2	0,3	0	0,1
Illite	K _{0.65} Al _{2.0} [Al _{0.65} Si _{3.35} O ₁₀](OH) ₂					0	0	0	0
Groupe zéolite (aluminosilicate)						0	0	0	0
Zéolite	Si, Al, K, Na, Ca hydraté					0	0	0	0
Sr,Cs zéolite						0	0	0	0
Groupe oxy/hydroxydes de Fer						0,0	1,7	3,5	2,2
Magnetite	Fe ²⁺ Fe ³⁺ ₂ O ₄	176		64%		0	0	2,7	0
Titanomagnétite	Fe ²⁺ (Fe ³⁺ ,Ti) ₂ O ₄	176		64%		0	1,6	0	1,3
Goethite	α-Fe ³⁺ O(OH)	89		63%		0	0,1	0,8	0
Hematite	Fe ³⁺ ₂ O ₂	160		65%		0	0	0	0.9
Arséniate						0	0	0	0
Scorodite	Fe ³⁺ AsO₄ · 2H₂O	231	32%	24%		0	0	0	0
Arsénite						0	0	0	0
Arsénolite	As ₂ O ₃	198	75%			0	0	0	0
Groupe sulfures						0	0,1	0,8	0,1
Chalcopyrite	CuFeS ₂	184		31%	35%	0	0,1	0,8	0,1
Pyrite	FeS ₂	120		47%	53%	0	0	0	0
Arsénopyrite	FeAsS	163	46%	34%	20%	0	0	0	0
Orpiment	AsS	107	70%		30%	0	0	0	0
Groupe sulfates						9,9	2,2	4	3,9
Sulfate de Cs	Cs ₂ SO ₄	362			9%	0	0	0	0
Jarosite	KFe ³⁺ ₃ (SO ₄) ₂ (OH) ₆	501		13%	13%	9,9	2,2	4	3,9
Groupe carbonates						0	14,8	0	0
Calcite	CaCO ₃					0	14,8	0	0
Dolomite	CaMg(CO ₃) ₂	1			l	0	0	0	0
Groupe phosphates	· • •					0	0	0	0
Berlinite	AIPO ₄					0	0	0	0
Autres						0	0	0	0
Na, Cs Fullérène c60						0	0	0	0
	Bilan As								
% phases arséniées						0	0	0	0
As calculé (stochiométrie ; ppm)						0	0	0	0
As ICP totale (ppm)						8700	38000	64000	61000
Bilan (ICP-DRX)			,			8700	38000	64000	61000
Phases potentiellement arséniées (% ; par ordre de probabilité selon les ph	ases détéctés)			11,1	4,2	7,8	6,2
Phase probable 2						Jar	Jar Ti-N4et	Jar	Arg Ti-Mart
Phase probable 3						Arg	Goe	Hmt	Hmt
Phase probable 4							Arg	Arg	lar
	Bilan Fe								54.
Fe calculé (stochiométrie ; ppm)						12 647	14 590	33 745	19 741
Fe ICP totale (ppm)						110 000	94 000	160 000	130 000
Bilan (ICP-DRX)						97 353	79 410	126 255	110 259
	Bilan S								
% massique S calculé (stochiométrie	2)					12647	3159	7900	5331
% massique As ICP totale						12 000	27 000	14 000	31 000
Bilan (ICP-DKX)	nhaco arcónióo					-647	23 841	6 100	25 669

phase potentiellement arséniée

Abbréviation : Arg : argile ; Mgt : magnétite ; Ti-Mgt : titanomagnétite ; Hmt : Hématite ; Goe : giéthite ; Jar : jarosite ; Ber : belinite. en rouge : bilan négatif entre la concentration en As calculé selon les proportions minéralogiques et la concentration en As déterminé à l'ICP

Figure 61. Proportions minéralogiques des matériaux de la plateforme Marty

8.4.5.2 Résultats des extractions séquentielles

Les résultats des extractions séquentielles sont exprimés en mg/kg dans le Tableau 52. Ils sont également exprimés en pourcentage extrait dans le Tableau 53 en considérant la concentration extraite la plus haute parmi la somme des concentrations des fractions F0+F1+F2+F3 et la concentration de la minéralisation totale, afin de normaliser les résultats à 100%. En effet, le Tableau 28 montre que pour certains éléments comme le calcium et le fer, les extractions séquentielles sont plus efficaces que la minéralisation totale et montrent des bilans positifs. Les extractions de la fraction F0 seront discutés dans la section suivante.

Nous rappelons que les objectifs des extractions séquentielles sont de quantifier les éléments extraits pour les fractions suivantes :

- F0 : fractions lixiviable ;
- F1 : fraction adsorbée sur les surfaces minérales (e.g. argiles) ;
- F2 : fraction réductibles (oxy/hydroxydes) ;
- F3 : fraction oxydable (sulfures et matière organique) ;
- RES : fraction résiduelle (silicates).

Les résultats des extractions séquentielles des échantillons MAR6-7-8-9-10-11-28 (tas de matériaux) et MAR2-3 (muret) mettent en évidence les éléments suivants :

- l'aluminium est en grand majorité issue de la fraction résiduelle RES (79-93%) en accord avec sa distribution dans les silicates, mais aussi dans la fraction F2 (7-18%) indiquant qu'il se trouve dans des oxy/hydroxydes d'aluminium ;
- le bismuth est retrouvé à 40-46% dans la fraction réductible F2, 54-56% dans la fraction résiduelle RES et 0-3% dans la fraction oxydable F3 ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le calcium est extrait en majorité dans la fraction F0 (42-54%; moy=33%),mais également dans les fractions F1 (8-15%), F2 (2-10%) et F3 (27-41%);
- le magnésium est principalement issu de la fraction résiduelle RES (75-78%) signifiant sa présence dans les silicates ;
- le plomb est retrouvé à 24-34% dans la fraction réductible F2, 64-76% dans la fraction résiduelle RES et 0-2% dans la fraction oxydable F3 ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le zinc est retrouvé à 20-28% dans la fraction réductible F2, 53-61% dans la fraction résiduelle RES et 11-19% dans la fraction oxydable F3 ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le fer est extrait dans la fraction réductible F2 (63-88%) dans la fraction résiduelle RES (0-31%) et dans la fraction oxydable F3 (6-12%). Cela indique qu'il est en contenu dans des oxy/hydroxydes ainsi que dans sulfates (voir S) et des sulfures.
- le soufre est principalement extrait dans la fraction lixiviable F0 (7-13%), dans la fraction F1 (17-57%) et la fraction réductible F2 (33-68%) et dans une moindre mesure dans la fraction oxydable F3 (1-2%) et résiduelle RES (0-2%). Cela indique qu'il est principalement inclus dans des sulfates de fer tel que la jarosite, en accord avec les données de DRX.
- l'arsenic est extrait dans la fraction F1 (4-6%), dans la fraction F2 (79%), et dans le fraction résiduelle RES (15-17%). Cela indique qu'il est principalement associé aux oxyhydroxydes de fer (peu d'oxydes détectés en DRX), ainsi qu'aux sulfates partiellement dissous lors de la fraction F1 et F2 et probablement à des sulfures encore présents dans la fraction résiduelle et partiellement dissout lors de l'étape F2.

ID échantillon	Fraction	AI	As	Bi	Са	Fe	Mg	Pb	S	Zn
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	F0	31,0	1,0	<0,01	206,0	122,0	13,5	<0,043	1172,0	0,7
	F1	15	2 612	<0,04	32	365	8	0	9 199	2
	F2	809	57 673	61	38	65 403	77	4	5 294	6
MADOO	F3	80	18	0	103	8 708	63	<0,04	88	3
MARZ-J	res	3 514	12 501	71	0,0	0	478	13	327	19
	Total fractions	935	60 304	61	379	74 598	161	4	15 753	12
	Minéralisation totale	4 449	72 805	132	214	54 613	639	17	16 079	32
	Résidus* (%)	79%	17%	54%	-77%	-37%	75%	76%	2%	61%
	F0	0,8	0,7	<0,01	1 680,0	1,2	165,0	<0,01	1 710,0	<0,5
	F1	44	509	0	582	67	116	<0,04	2 195	<1
	F2	2 423	6 256	22	89	44 596	315	15	8 707	26
MAR6-7-8-9-10-11-	F3	79	3	2	1 649	3 932	175	0,7	226	17
28	RES	32 453	1 172,8	31	0,0	22 004	2 759	29	0	50
-	Total fractions	2 547	6 768	24	4 000	48 596	771	16	12 838	43
	Minéralisation totale	35 000	7 941	55	2 233	70 600	3 530	45	10 919	93
	Résidus* (%)	93%	15%	56%	-79%	31%	78%	64%	-18%	54%

Tableau 52. Résultats d'extractions séquentielles en mg/kg pour les matériaux de la plateforme Marty

* : Résidus% = (Minéralisation totale - Total fractions)/ Minéralisation totale

Tableau 53. Résultats d'extractions séquentielles en % extrait pour les matériaux de la plateforme Marty

ID échantillon	Fraction	AI	As	Bi	Са	Fe	Mg	Pb	S	Zn
		%	%	%	%	%	%	%	%	%
	F0	0,697%	0,001%	0,004%	54,371%	0,164%	2,113%	0,137%	7,289%	2,298%
	F1	0%	4%	0%	8%	0%	1%	0%	57%	5%
MAR2-3	F2	18%	79%	46%	10%	88%	12%	24%	33%	20%
	F3	2%	0%	0%	27%	12%	10%	0%	1%	11%
	RES	79%	17%	54%	0%	0%	75%	76%	2%	61%
	F0	0,002%	0,009%	0,009%	42,003%	0,002%	4,674%	0,011%	13,320%	0,270%
	F1	0%	6%	1%	15%	0%	3%	0%	17%	1%
MAR6-7-8-9-10-11-28	F2	7%	79%	40%	2%	63%	9%	34%	68%	28%
	F3	0%	0%	3%	41%	6%	5%	2%	2%	19%
	RES	93%	15%	56%	0%	31%	78%	64%	0%	53%

En raison de l'importance de de la fraction extractible à l'eau (F0) et de ses faibles concentration, les chiffres significatifs après la virgule ont volontairement été ralongés. Les résultats sont normalisés à 100%, en utilisant la plus grande des concentrations parmi celle issue de la minéralisation totale ou de la somme des fractions

En conclusion, l'étude de la distribution en arsenic dans les phases minérales montre qu'il est probablement contenu dans la jarosite et des oxyhydroxydes de fer arséniés (i.e. scorodite) et des sulfures (i.e. arsénopyrite ± pyrite).

8.4.6 *Transfert des éléments*

Les transferts liés au ruissellement de l'eau de pluie en surface et la lixiviation sont appréhendés par les tests de lixiviation. Les résultats de lixiviation sont présentés dans le Tableau 53, le Tableau 54 et le Tableau 55.

Les résultats de lixiviation au cours des extractions séquentielles montrent les éléments suivants :

- les éléments peu mobilisables dans l'eau sont le magnésium (moy=2%) le zinc (moy=2%) et l'aluminium (0,35%).
- les éléments les moins mobilisables sont l'arsenic (moy=0,005%), le bismuth (moy=0,008%), le plomb (moy=0,074%), et le fer (moy=0,083%).

• sur les 0,8% et 17,2% d'arsenic présent dans les échantillons mis à nu par la crue de 2020 et les matériaux de résidus, seuls 0,7 et 1,0 mg/kg sont respectivement mobilisés dans l'eau.

Les résultats de lixiviation issus des pack ISDI montrent les éléments suivants :

- parmi les éléments mesurés, les éléments ou composés lixiviables sont les suivants : Al, Sb, As, Ba, Ca, Co, Cr, Fe, Mg, Mo, Ni, Pb, Cu, Zn, S, Cl⁻, Fl⁻ et SO₄²;
- les éléments les plus mobilisables dans l'eau sont le calcium (moy=7%) et le soufre (moy=6%);
- les éléments peu mobilisables dans l'eau sont le zinc (moy=0,084%), le cuivre (moy=0,114%), l'arsenic (moy=0,015%; hors matériaux de recouvrement) et l'aluminium (moy=0,063%);
- l'arsenic dans les matériaux de recouvrement est mobilisable à 0,62% mais n'a que 34 mg/kg d'arsenic dans sa matrice solide ;
- sur les 0,6% à 2,3% d'arsenic présent dans les matériaux mis à nu par la crue de 2020 et les matériaux de résidus, 1,2 mg/kg sont mobilisés au maximum. En revanche, sur les 19 000 mg/kg retrouvé dans les matériaux investigués à 50 cm sous les matériaux de recouvrement (MAR12) 4,6 ppm sont lixiviables (0,024% lixiviable). Cela s'explique par le caractère boulant des matériaux situés à 50 cm sous la couverture, à l'inverse des matériaux mis à nu qui sont cimentés.

Les deux types de lixiviation montrent des résultats similaires et dont les ordres de grandeurs sont les mêmes, à l'exception des éléments suivants le zinc et de l'aluminium.

Un tableau de synthèse (Tableau 55) décrit les paramètres et les résultats des tests de lixiviation pour l'arsenic.

Analyses	Chlorures	Fluorures	Sulfates	AI	Sb	Ag	As	Ва	Cd	Ca	Co	Cr	Fe	Mg	Hg	Мо	Ni	Pb	Cu	Se	Zn	Au	Bi	S tot	phénol (indice)
Unité	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
MAR4-5 (brut)	n.a.	n.a.	n.a.	13000	n.a.	<1,00	23000	n.a.	<4,1	31000	<17	18	120000	5600	n.a.	n.a.	<21,0	<21,0	76	n.a.	<41	<21,0	58	13000	n.a.
MAR4-5 (éluat)	91	<5	6000	<0,200	0,011	<0,0100	1,2	0,019	<0,00400	2300	0,014	<0,0100	0,13	71	<0,00200	<0,00500	0,022	<0,0100	0,01	<0,0100	<0,050	<0,200	<0,400	1800	<5,00
MAR4-5 (% lixiviable)	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	0,005%	n.c.	n.c.	7,42%	n.c.	n.c.	n.c.	1,27%	n.c.	n.c.	n.c.	n.c.	0,01%	n.c.	n.c.	n.c.	n.c.	13,85%	n.c.
MAR12 (brut)	n.a.	n.a.	n.a.	12000	n.a.	<0,99	19000	n.a.	<4,0	9500	<16,0	15	59000	2700	n.a.	n.a.	<20,0	20	40	n.a.	<40	<20,0	<40	6000	n.a.
MAR12 (éluat)	<5	1,2	1200	<0,200	0,043	<0,0100	4,6	0,033	<0,00400	740	<0,00500	<0,0100	<0,100	29	<0,00200	0,0096	<0,0100	<0,0100	0,11	<0,0100	0,062	<0,200	<0,400	370	<5,00
MAR12 (% lixiviable)	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	0,024%	n.c.	n.c.	7,79%	n.c.	n.c.	n.c.	1,07%	n.c.	n.c.	n.c.	n.c.	0,28%	n.c.	n.c.	n.c.	n.c.	6,17%	n.c.
MAR13 (brut)	n.a.	n.a.	n.a.	16000	n.a.	<1,00	6300	n.a.	<4,0	9000	<16,0	19	43000	3900	n.a.	n.a.	<20,0	28	55	n.a.	<40	<20,0	<40	7000	n.a.
MAR13 (éluat)	<5	0,9	1100	0,59	0,033	<0,0100	1,3	0,045	<0,00400	630	<0,00500	<0,0100	0,41	25	<0,00200	0,0093	<0,0100	<0,0100	0,028	<0,0100	<0,050	<0,200	<0,400	330	<5,00
MAR13 (% lixiviable)	n.c.	n.c.	n.c.	0,004%	n.c.	n.c.	0,021%	n.c.	n.c.	7,00%	n.c.	n.c.	n.c.	0,64%	n.c.	n.c.	n.c.	n.c.	0,05%	n.c.	n.c.	n.c.	n.c.	4,71%	n.c.
MAR6-7-8-9-10-11-28 (brut)	n.a.	n.a.	n.a.	13000	n.a.	<1,00	15000	n.a.	<4,0	9900	<16,0	16	77000	2900	n.a.	n.a.	<20	24	130	n.a.	67	<20	<40	15000	n.a.
MAR6-7-8-9-10-11-28 (éluat)	13	<0,50	3700	<0,200	0,0063	<0,0100	1,4	0,033	<0,00400	1100	0,1	<0,0100	<0,100	88	<0,00200	<0,00500	0,25	<0,0100	0,019	<0,0100	0,056	<0,200	<0,400	1100	<5,00
MAR6-7-8-9-10-11-28 (% lixiviable)	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	0,009%	n.c.	n.c.	11,11%	n.c.	n.c.	n.c.	3,03%	n.c.	n.c.	n.c.	n.c.	0,01%	n.c.	0,08%	n.c.	n.c.	7,33%	n.c.
MAR14-15-18-19-20-21-22-24-25-26-27 (brut)	n.a.	n.a.	n.a.	22000	n.a.	<1,00	34	n.a.	<4,2	52000	<17	27	20000	4700	n.a.	n.a.	<21,0	<21,0	<42	n.a.	44	<21,0	<42	<350	n.a.
MAR14-15-18-19-20-21-22-24-25-26-27 (éluat)	<5	3	22	27	<0,00500	<0,0100	0,21	1	<0,00400	210	<0,00500	<0,0100	2,1	10	<0,00200	0,0081	<0,0100	0,091	0,24	<0,0100	<0,050	<0,200	<0,400	<3,30	<5,00
MAR14-15-18-19-20-21-22-24-25-26-27 (%	n.c.	n.c.	n.c.	0,123%	n.c.	n.c.	0,62%	n.c.	n.c.	0,40%	n.c.	n.c.	n.c.	0,21%	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.

Tableau 54. Proportion des éléments lixiviables (%) issues des essais de lixiviation de pack ISDI

N.B. : les paramètres organiques analysés dans le cadre des pack ISDI sont tous inférieurs aux LQ et ne sont donc pas traités ici. Ils sont toutefois annexés au rapport.

Zone ciblée	Matériaux	sous couve recou	rture (ou pa ıvert)	rtiellement	Tas de	résidus	Matériaux de recouvrement		
Echantillon	MAR2-3	MAR4-5	MAR12	MAR13	MAR6-7-8- 9-10-11-28	MAR6-7-8- 9-10-11-28	'MAR14-15-18-19-20- 21-22-24-25-26-27		
Fraction granulométrique	2 mm	4 mm	4 mm	4 mm	2 mm	4 mm	4 mm		
Rapport L/S	100	10	10	10	100	10	10		
Durée	16h	24h	24h	24h	16h	24h	24h		
[As] éluat (mg/l)	0,01	0,12	0,46	0,13	0,01	0,14	0,02		
[As] brut (mg/kg)	72 805	23 000	19 000	6 300	7 941	15 000	34		
[As] éluat (mg/kg)	0,99	1,2	4,6	1,3	0,73	1,4	0,21		
Proportion d'arsenic lixiviable (% brut)	0,001%	0,005%	0,024%	0,021%	0,009%	0,009%	0,618%		

Tableau 55. Synthèse des paramètres et résultats de lixiviation des échantillons de la plateforme Marty

En conclusion, l'étude du transfert en arsenic dans les eaux de lixiviation montre que l'arsenic est peu mobilisable dans l'eau pour les matériaux situés sous les matériaux de recouvrement parce qu'ils sont indurés et pour les matériaux issus des tas, probablement en raison de la stabilité des phases dans lesquelles il se trouve (e.g. jarosite, sulfures, et potentiellement la scorodite). En revanche, les matériaux situés immédiatement sous les matériaux de recouvrement, n'étant pas indurés, sont plus propices au transfert d'arsenic dans les eaux.

8.4.7 Synthèse de la caractérisation des matériaux de la plateforme Marty

Les caractéristiques physiques, chimiques, et lithologiques des matériaux de la plateforme Marty sont présentés dans le tableau ci-dessous.

	Matériaux de recouvrement	Matériaux partiellement recouverts	Tas de mat
Granulométrie (proportions massiques)	38% de graves et blocs et 62% de fraction fine	75% de graves et blocs et 25% de fraction fine Fraction fine : - 60% 200-2000 μm - 23% 63-200 μm - 17% 0-63 μm	75% de graves et blocs et 25% de fraction fine
Lithologie/minéralogie	Fraction fine : Limon brun végétalisé Fraction grossière : Calcaire	 Fraction fine : Sables et limon minéralisés, cimente la fraction grossière pour les matériaux mis à jour par les crues Fraction grossière : Matériaux minéralisés fortement oxydés 	Fraction fine : • Limons sableux de la composition de r Fraction grossière : • Schistes stériles • Schistes minéralisés • Minerai à scorodite
		Phases arséniées et potentiellement arséniées : Sulfate : jarosite Oxy/hydroxydes de fer	 Phases arseniees et potentiellement arser Scorodite (présence non mesurée mai Sulfures (arsénopyrite et pyrite) Sulfate : jarosite Oxy/hydroxydes de fer
Chimie/granulochimie	Concentrations (vs. zone d'étude) :	Concentrations (vs. zone d'étude) : Pauvre en Ca, Mn, Ni, Cu, Zn et Pb Riche en S, Fe, As, Se et Bi Echantillon global : [As] ≈ 37 758 mg/kg, fraction fine 1,6 fois plus concentrée que fraction grossière Fraction fine : [As] ≈ 52 000 mg/kg 43% issue fraction 200-2000 µm ([As]≈37 800 mg/kg) 34% issue fraction 63-200 µm ([As]≈76 000 mg/kg) 23% issue fraction 0-63 µm ([As]≈69 000 mg/kg)	Concentrations (vs. zone d'étude) : Pauvre en Ca Riche en S, F Moyenne en / Echantillon global : [As] ≈ 28 890 mg/kg, fraction grossière 5 fois p Fraction fine : [As] ≈ 7 752 mg/kg
Distribution des éléments	n.d.	As distribué dans oxy/hydroxydes de fer et sulfates (jarosite)	As distribué dans oxy/hydroxydes de fer dont s pyrite) et sulfates
Transfert	As mobilisables dans l'eau (faible concentration sur brut) : • Lixiviation 1/10 : 0,62 % de l'As de la matrice solide extrait dans l'eau (0,21 mg/kg ou 20 μg/l)	 As mobilisables dans l'eau : Lixiviation 1/10 : 0,005-0,023% de l'As de la matrice solide extrait dans l'eau (1,2-4,6 mg/kg ou 12-460 μg/l) Lixiviation 1/100 : 0,001% de l'As de la matrice solide extrait dans l'eau (1 mg/kg ou 12 μg/l) 	As peu mobilisable dans l'eau : • Lixiviation 1/1 extrait dans l' • Lixiviation 1/1 solide extrait

Tableau 56. Caractéristiques physiques, chimiques, et lithologiques des matériaux de la plateforme Marty

tériaux

roches silicoclastiques et calcaire

eniées : ais supposée)

a, Mn, Ni, Cu, Zn et Pb Fe, et Bi As, Se et Pb

olus concentrée que fraction fine

scorodite), sulfures (arsénopyrite et

10 : 0,009% de l'As de la matrice solide l'eau (1,4 mg/kg ou 140 μg/l) 100 : 0,009% de l'As de la matrice t dans l'eau (0,73 mg/kg ou 10 μg/l)

8.5 Verse de Ramèle

8.5.1 *Géomorphologie*

La verse de Ramèle s'étend sur une surface de 162 000 m² entre les cotes 437 m NGF et 303 m NGF. La pente intégratrice maximale de la verse est de 27° (cf. Figure 62). Le bassin versant de la verse de Ramèle présente une pente moyenne très faible en lien avec l'existence du replat en amont de la verse jusqu'à la ferme photovoltaïque plus à l'ouest. Les sols à végétation éparse représentent environ 60% de la surface du bassin versant. Les sols nus sont présents au niveau des routes et pistes.

Figure 62 : Cartographie des pentes du bassin versant de la verse de Ramèle

8.5.2 Données sur la stabilité

D'un point de vue géotechnique, la verse de Ramèle ne présente pas de signe d'instabilité en grand. Toutefois, un effondrement localisé des sols sous pression de terres et présence de cavité sous-jacente (fontis) s'est produit en 2008 au niveau de la plateforme Ramèle et a été remblayé (localisé approximativement en Figure 64).

Lors de la visite de site de janvier 2020 réalisée par ENVISOL, un glissement superficiel a été observé depuis la plateforme Ramèle, au niveau de ce qui a été la galerie d'aérage Ramèle. La date à laquelle a eu lieu l'effondrement reste inconnue.

BRGM – La Villanière (11)Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Figure 63. Effondrement observé au droit de la galerie d'aérage Ramèle (Janvier 2020)

8.5.3 Dynamique des écoulements de surface

Le bassin versant et les écoulements de surface associés à la verse de Ramèle sont présentés en Figure 64.

La verse de Ramèle représente 40% de la surface au sein de son bassin. La verse récupère les eaux de ruissellement provenant d'une partie de la ferme photovoltaïque à l'ouest.

Figure 64 : Cartographie des écoulements de surface sur le bassin versant de la verse de Ramèle

8.5.4 *Dynamique des écoulements souterrains et de sub-surface*

Le cadre hydrogéologique de la verse de Ramèle semble complexe. Il est possible d'avoir, suite à l'infiltration des eaux à travers les stériles miniers, des écoulements souterrains de subsurface vers le Grésillou et des écoulements plus profonds par le biais des galeries souterraines (ICF, 2007). Les nombreuses galeries au droit de la verse de Ramèle peuvent alors créer des cheminements d'eaux préférentiels vers le Grésillou ou vers la mine.

Il existe donc :

- un phénomène de ruissellement en surface ;
- des écoulements de subsurface au sein des stériles miniers pouvant être recoupés par les galeries minières (galerie Marguerite notamment);
- des circulations dans l'encaissant via un réseau de fractures/fissures pouvant atteindre le réservoir minier.

8.5.5 Caractérisation lithologique macroscopique

Plusieurs zones cibles sont distinguées :

- la zone d'impact mise en évidence lors de l'étude d'ICF en 2007, située à proximité de l'ancienne cheminée de la fonderie ;
- la zone d'impact mise en évidence lors de l'étude d'ICF en 2007 en corps de verse, située au-dessus de nombreux couloirs de ravinement se dirigeant vers le Grésillou ;
- en bas de verse, dans une zone située en contrebas de l'ancienne zone de stockage des scories ;
- en pied de verse Ramèle en contrebas des anciens bassins de décantation au niveau de la berge de la rive droite du Grésillou.

Zone d'impact à proximité de l'ancienne cheminée de la fonderie

La zone d'impact à proximité de l'ancienne cheminée de la fonderie située dans la partie supérieure de la verse Ramèle est caractérisé par de très fortes pentes qui s'étendent jusqu'au Grésillou en contre-bas entre Mine 1,5 et Grésillou C. Les matériaux investigués au droit de cette zone sont composés en moyenne de 39% de graves et blocs (19 à 59%) et 61% de matrice fine (< 2mm). Les blocs incluent des schistes et des pelites stériles, des matériaux riches en sulfures oxydés, des scories et du minerai altéré à scorodite. La matrice fine correspond à des limons bruns plus ou moins riches en poudre grise à blanche. On retrouve également cette poudre blanche de façon individualisée (RAM1bis), dont les analyses l'identifieront comme étant de l'anhydride arsénieux.

Tableau 57. Caractéristiques physiques et lithologiques des échantillons de la zone d'impact à proximité
de l'ancienne cheminée de la fonderie de la verse de Ramèle

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
RAM1	993	878	47	poudre blanche/grise	n.c.
RAM1bis	1118	0	0	matériaux fin blanc, texture plastique	n.c.
RAM2	653	925	59	matériaux fin blanchâtre	aggregats vert/jaune/blanc
RAM3	956	792	45	sable limoneux brun	concretions blanches
RAM4	1238	289	19	limon brun/rouge	indéterminé car couvert de limon
RAM5	1196	431	26	limon jaune/brun	blocs jaune, rouille, blanc, vert

Figure 65. Photographie d'échantillons représentatifs de la zone d'impact à proximité de l'ancienne cheminée de la fonderie de la verse de Ramèle

Zone d'impact en corps de verse

La zone d'impact en corps de verse surplombe et inclut de nombreux couloirs de ravinement plus ou moins continus jusqu'au Grésillou à proximité de Mine 2. Les matériaux investigués sont composés en moyenne de 70% de graves et blocs (66 à 81%) et 30% de matrice fine (< 2mm). Les blocs incluent des quartzites, des schistes blancs, des schistes fortement oxydés et du minerai altéré à scorodite. La matrice fine correspond à des limons de couleur brun/rouge à ocre et peut localement inclure de la poudre blanche (RAM8).

Tableau 58. Caractéristiques physiques et lithologiques des échantillons de la zone d'impact en corps deverse de Ramèle

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
RAM6	353	1476	81	limon sableux brun	schiste
RAM7	798	1574	66	limon ocre	schiste fortement oxydé
RAM8	582	1237	68	limon sableux clair	minérais oxydé et poudre blanche
RAM9	639	1569	71	limon brun/rouge	schiste blanc
RAM10	755	1383	65	limon brun/rouge	qartzite, pelite
				RAM7	RAM8
	RAM				
			RAM7		
				RAM6	RAM8

Figure 66. Photographies des matériaux situés dans les zones de ravinement au droit de la zone d'impact en corps de verse de Ramèle

Bas de verse de Ramèle

La zone investiguée est située en bas de la verse Ramèle en contrebas de l'ancienne zone de stockage de scorie au droit d'un palier complètement végétalisé. Les matériaux investigués sont composés en moyenne de 76% de graves et blocs (74 à 79%) et 24% de matrice fine (<

2mm). Les blocs incluent des schistes et des pélites La matrice fine correspond à des limons bruns riches en matière organique.

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
RAM16	413	1272	75	limon brun	schiste, pelite
RAM17	356	1130	76	limon brun	schiste, pelite
RAM18	512	1462	74	limon brun	schiste, pelite
RAM19	526	1785	77	limon brun	schiste, pelite
RAM20	452	1727	79	limon brun	schiste, pelite

Tableau 59. Caractéristiques physiques et lithologiques des échantillons du bas de la verse de Ramèle

Figure 67. Photographie d'échantillons des matériaux représentatif du bas de la verse Ramèle

Pied de verse érodé par le Grésillou

Le pied de verse investigué de Ramèle se situe en contre bas des anciens bassins de décantation sur la rive droite du Grésillou. L'affleurement investigué est caractérisé par une alternance de dépôts stratifiés fins et grossiers dont le pendage suggère que ces matériaux correspondent à des dépôts successifs de talus.

Les matériaux investigués sont composés en moyenne de 72% de graves, bocs et racines (58 à 76%) et 28% de matrice fine (< 2mm). Les blocs incluent des quartzites, des schistes, des pélites, des argilites et des matériaux indurés de granulométrie mixte de type ferricrête.

L'uniformité de la taille des blocs suggère qu'il s'agit de matériaux concassés. La matrice fine correspond à des limons de brun à brun/rouge.

Tableau 60. Caractéristiques physiques et lithologiques des échantillons du pied de verse Ramèle érodéspar le Grésillou

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
PAL1	844	2400	74	limon brun	schiste, pelite/quartzite, argilite, hardpan
PAL2	759	2300	75	limon brun clair	schiste, pelite/quartzite, argilite, hardpan
PAL3	923	1295	58	limon brun	schiste, pelite/quartzite, argilite, hardpan
PAL4	632	1973	76	limon brun rouge	schiste, pelite/quartzite, argilite, hardpan
PAL5	624	1874	75	limon brun	schiste, pelite/quartzite, argilite, hardpan

Figure 68. Photographies des matériaux situés au pied de la verse Ramèle érodé par le Grésillou

Blocs rocheux des talus

Les blocs rocheux de la verse Ramèle les plus gros sont systématiquement été retrouvés en pied de talus. Ils peuvent représenter jusqu'à 1 m³ en volume. Ils semblent majoritairement composés de roches stériles mais comportent également des indices de minéralisation. On y retrouve des quartzites, des pélites plus ou moins schisteuse, des argilites, la présence de veine de quartz, ainsi que des matériaux très oxydés et des blocs de minerais riches en scorodite (Figure 69).

Figure 69. Photographies illustrant les blocs des talus de la verse Ramèle

8.5.6 Caractérisation chimique et granulochimique

8.5.6.1 Chimie globale

Les résultats sont présentés dans le Tableau 61, le Tableau 62 et la Figure 70.

Au sein de la Figure 70, les médianes des concentrations en métaux des échantillons de chaque zone investiguée de la verse de Ramèle sont normalisées à la concentration moyenne de l'ensemble du site d'étude, définie comme la moyenne des médianes de chaque zone d'intérêt. Cela permet d'illustrer des appauvrissements et des enrichissements relatifs par rapport à l'ensemble du site d'étude. De plus, des valeurs de bruits de fond réalisées sur le domaine géologique des nappes, là où se trouve la verse Ramèle, y sont ajoutées à des fins de comparaison. Les données provenant de deux méthodes analytiques différentes (matériaux investigués : pXRF ; bruit de fond : ICP), la comparaison n'est réalisée que sur les éléments dont les corrélations entre les deux méthodes ont été réalisées et sont bonnes.

Globalement, et comparativement aux matériaux investigués sur l'ensemble du site d'étude, les matériaux de la verse de Ramèle sont hétérogènes et caractérisés par :

• pour la zone d'impact à proximité de la l'ancienne cheminée :

- o de faibles teneurs en Si, Al, K, et Ni;
- o de fortes teneurs en S, As, Se, Sb, Pb et Bi :
 - les teneurs en S varient de 0,4% à 4,7%, avec une médiane de 3,1%;
 - les teneurs en As varient de 2,9% à 47,2% (maximum en RAM1bis), avec une médiane de 3,7% ;
 - les teneurs en Pb varient de 427 mg/kg à 1,9% (maximum en RAM1), avec une médiane de 1 897 mg/kg ;
 - les teneurs en Bi varient de 946 mg/kg à 5,8% (maximum en RAM1), avec une médiane de 6 273 mg/kg ;
- des teneurs moyennes pour les autres éléments (Mg, Cr, Mn, Fe, Cu, Zn et Ba);

• pour la zone d'impact en corps de verse :

- o de faibles teneurs en Ca et Ni;
- de fortes teneurs en S ;
- de fortes teneurs en en As localement (maximum en RAM8 : 20%; [As]_{med} = 8 263 mg/kg);
- des teneurs moyennes pour les autres éléments (Mg, Al, Si, K, Cr, Mn, Fe, Cu, Zn, As, Se, Sb, Sb, Ba, Pb et Bi);
- pour la zone en bas de verse :
 - de faibles teneurs en S, Ca, Mn, Cu, As (<2 814 mg/kg, un bloc à 11,2%), Se, Pb et Bi ;
 - des teneurs moyennes pour les autres éléments (Mg, Al, Si, K, Cr, Fe, Ni, Zn, Sn, Sb et Ba);
- pour la zone en pied de verse :
 - o de faibles teneurs en S ;

- des teneurs moyennes et variables en As ([As]_{min}=716 mg/kg; [As]_{med}=7 159 mg/kg; [As]_{max}=1,7%);
- de fortes teneurs en Ca, Mn, Cu (med = 1083 mg/kg ; max = 3 531 mg/kg) et Bi (med = 140 mg/kg ; max = 371 mg/kg) ;
- des teneurs moyennes pour les autres éléments (Mg, Al, Si, K, Cr, Mn, Fe, Ni, Zn, As, Se, Sn, Sb, Ba et Pb).

Comparativement au bruit de fond, les matériaux issus des zones d'impact de la verse de Ramèle sont :

- enrichis en S (localement), Cu, As, Pb (localement) et Bi ;
- dans la gamme de concentration en S, As et Cu pour le bas de la verse ;
- proches ou dans la même gamme de concentrations pour les autres éléments comparables.

Figure 70. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la verse de Ramèle (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)

Les concentrations maximales observées en RAM1 et RAM8 sont en accord avec la présence de poudre blanche, identifiée comme de l'anhydride arsénieux (RAM1bis; voir section 8.5.7.1). En effet, on observe que les spectres multi-élémentaires de ses 3 échantillons sont très proches (Figure 71).

Figure 71. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux contenant de l'anhydride arsénieux de la verse de Ramèle (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)

Les résultats laboratoire étant moins nombreux que les résultats au pXRF et systématiquement représentés par un équivalent au pXRF corrigé en fonction des analyses laboratoire, ils n'appellent pas d'autres commentaires. Toutefois, pour les éléments non mesurés au pXRF, les éléments suivants sont mis en évidence :

- au regard des concentrations en sulfates et des concentrations en S total, il est montré que le S contenu dans les sulfates solubles (SO₄²⁻ seulement, n'inclus pas la jarosite) représente en moyenne 4% du S total, contre 96% dans les sulfures. On observe toutefois 21% du S contenu dans les sulfates solubles pour RAM4-5 ; ;
- hormis pour le chrome, la quantité d'élément dissous par minéralisation régale représente plus de 80% de la quantité extraite par minéralisation totale ;
- les analyses de l'or montrent des teneurs détectées mais non quantifiées (i.e. situées entre la LQ et la LD) après minéralisation totale ou à l'eau régale. A titre indicatif, les concentrations détectées sont significatives, de 8 et 22 mg/kg ou g/t pour les matériaux situés dans la zone d'impact à proximité de l'ancienne cheminée (RAM1bis) et en pied de verse (PAL3-4), respectivement.

Tableau 61. Chimie des matériaux de la verse de Ramèle (résultats pXRF corrigés en mg/kg)

ID échantillon	Zone d'intérêts	Mg	ΔΙ	Si	s	к	Ca	Cr	Mn	Fe	Co*	Ni	Cu	Zn	Δs	Se	Mo*	Δσ*	Cq*	Sn	Sh	Ba	Hø*	Ph	Bi
			7.0	0.	Ŭ			. .								~						50	8		
RAM0B1	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	165	76	124 594	238	16	899	22	187 229	167	4	121	14	18	626	2 304	44	914	337
RAM0B2 RAM0B3	Verse Ramele Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	106	190	26 247	314	16	2//	168	3 914	4	23	20	70	92	46	2 692	58	61	52 86
RAM0B3	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	130	1 5 2 5	51 237	264	24	317	105	1 731	6	12	38	42	56	80	3 804	22	25	52
RAM0B5	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	124	2 216	65 583	324	39	460	169	2 603	6	10	36	40	56	143	3 732	22	31	56
RAM0B6	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	160	1 870	59 097	372	50	339	152	2 156	12	23	48	52	70	100	4 598	26	27	75
RAMOBS	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	194	1195	72 432	350	24	127	61	2 378	6	10	38	42	58	82	3 922	24	43 34	52
RAM0B9	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	100	106	80 914	378	24	142	60	2 938	6	10	36	40	54	76	3 920	24	30	48
RAM0B10	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	142	169	80 883	360	24	131	63	2 976	6	10	36	40	104	164	3 724	22	41	48
RAMOB11	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	186	130	91 371	464	30	111	47	1 161	8	16	48	52	70	100	1 471	32	50	68
RAMOB12 RAMOB13	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	72	77	74 248	242	16	198	22	55 396	68	6	24	20	30	145	2 738	42	10	109
RAM0B14	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	120	131	72 950	308	22	69	34	1 010	4	12	34	36	74	72	3 390	18	10	40
RAM0B15	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	170	68	172 969	210	12	575	16	232 093	255	4	12	10	150	407	1 808	36	8	652
RAM0B16 RAM0B17	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	150	863 458	69 935 73 687	384	28	280	167	4 192	10	14	42	46	64 56	92	3 832	28	84	58
RAMOB17	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	122	533	76 484	303	18	283	143	7 303	8	10	30	34	99	136	3 242	20	58	169
RAM0B19	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	144	329	64 544	338	26	201	91	6 818	8	12	38	42	90	117	3 990	28	48	83
RAM0B20	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	154	442	67 271	362	26	216	128	6 558	15	23	40	42	126	166	4 176	28	66	74
RAM0B21	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	206	576	84 081	502 264	38	415	162	8 666	21	14	48	52	117	102	5 566	36	61	105
RAM0B22	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	154	1 287	105 099	376	24	438	319	8 376	6	10	30	34	46	66	4 012	26	154	548
RAM0B24	Verse Ramèle	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	146	869	36 427	266	26	98	123	573	6	22	46	52	70	98	4 320	22	41	78
RAM1	Ramèle - Impact cheminée	187 147	43 982	88 862	33 429	13 422	3 978	261	441	35 328	50	32	221	134	218 034	657	2	174	283	935	7 306	334	26	19 257	58 514
RAM1bis RAM2	Ramèle - Impact cheminée Ramèle - Impact cheminée	285 525	38 629	77 534	31 527	7 044	1 912	456	420	5 019	26	43	50 638	18	472 158	1 128	2	109	737	437	4 311	2 656	36	11 695 427	40 765
RAM3	Ramèle - Impact cheminée	45 905	52 220	108 415	3 677	13 078	35 281	97	3 056	49 886	157	25	196	372	36 699	55	6	30	18	131	840	525	35	1 770	6 273
RAM4	Ramèle - Impact cheminée	40 427	58 316	106 276	9 356	8 752	29 465	56	3 255	64 633	92	18	263	670	24 727	28	4	54	71	255	1 102	627	16	4 327	14 316
RAM5	Ramèle - Impact cheminée	50 880	23 748	98 064	42 535	7 216	58 258	81	200	41 701	96	10	832	28	37 664	60	4	34	16	41	287	390	24	454	1 163
RAM4-5 Mediane	Ramele - Impact cheminee	44 882	34 771	92 941	24 /20	8 090	41 028	97	1 383	49 354	283	18	263	134	29 543	55	12	36	35	125	591 840	534	26	1 897	6 143
RAM6	Ramèle - Impact corps de verse	14 951	88 983	144 733	457	21 409	7 354	99	2 669	91 200	321	48	489	196	3 038	6	11	107	38	56	63	746	23	49	38
RAM7	Ramèle - Impact corps de verse	10 706	56 834	115 947	41 851	17 904	28	56	176	144 779	158	8	172	61	5 035	2	4	11	26	46	26	816	10	52	48
RAM8	Ramèle - Impact corps de verse	166 943	36 983	73 117	12 419	7 202	30	122	750	202 043	134	8	481	10	200 001	187	2	200	6	70	313	374	22	6	429
RAM9 RAM10	Ramèle - Impact corps de verse Ramèle - Impact corps de verse	16 064	73 648	136 627	407	15 470 20 195	24 410	99	1 928	108 401	142	29	342 431	289	8 263	/ 11	4	92	14	33 18	61	684 703	10	97	101
RAM6-7-10	Ramèle - Impact corps de verse	12 363	75 814	137 684	14 018	20 319	2 466	72	1 725	121 039	449	27	332	193	5 706	8	12	253	43	48	74	712	29	74	61
Mediane	Ramèle - Impact corps de verse	16 064	73 648	136 627	12 419	17 904	410	97	750	121 039	152	18	342	160	8 263	8	4	92	26	48	65	703	22	66	73
RAM16	Ramèle - Bas de verse	17 393	89 205	174 059	470	21 484	4 207	95	673	47 841	106	39	154	93	1 237	2	6	68	20	26	38	935	10	36	19
RAM17	Ramèle - Bas de verse	16 331	83 574	159 150	535	19 165	2 878	99	598	46 229	100	39	170	65	1 798	2	6	74	18	34	36	745	10	55	25
RAM19	Ramèle - Bas de verse	16 920	82 715	157 545	519	18 677	5 071	66	656	51 188	97	32	232	70	2 814	4	6	10	18	24	48	772	10	51	54
RAM20	Ramèle - Bas de verse	15 895	83 068	158 524	351	19 963	3 265	78	721	46 443	130	35	199	86	1 540	2	6	8	18	24	46	675	10	51	48
RAM16-18-19	Ramèle - Bas de verse	15 196	77 640	149 328	432	18 653	3 998	92	745	51 930	336	31	234	69	2 946	9	16	79	44	60	108	768	31	50	38
RAM21B1	Ramèle - Bas de verse	8 418	22 320	67 027	1 088	1 765	2 423	61	103	109 670	76	4	173	91	1 617	1	2	30	8	42	51	130	4	44	14
RAM21B1	Ramèle - Bas de verse	1 129	5 593	395 589	792	545	1 151	24	130	5 488	20	4	12	11	33	1	3	32	13	17	25	475	5	2	14
RAM21B2	Ramèle - Bas de verse	15 143	41 945	205 284	1 947	18 785	4 107	30	262	51 762	62	22	296	320	183	1	3	32	27	33	23	762	5	36	9
RAM21B2 RAM21B2	Ramele - Bas de verse Ramèle - Bas de verse	6 485 4 915	22 418	113 448	1 957	26 974	23 413	28	100	15 097	36 27	14	78 69	118 72	32 50	2	4	29	14	46	27	618 883	5	16	16
RAM2182	Ramèle - Bas de verse	16 388	67 385	222 517	243	20 587	2 103	1 366	126	48 540	57	36	115	100	213	2	7	8	11	30	44	799	6	9	11
RAM21B3	Ramèle - Bas de verse	10 176	72 670	135 006	1 500	36 270	3 296	224	148	57 864	62	34	41	76	228	2	7	31	11	36	22	1 034	7	19	14
RAM21B3	Ramèle - Bas de verse	10 525	67 133	178 399	147	26 552	1 675	71	75	48 555	61	29	72	71	265	2	4	7	13	44	59	701	6	10	15
RAM21B4 RAM21B4	Ramèle - Bas de verse Ramèle - Bas de verse	12 198	108 313	201 299	233 601	73 559	1 328	202	162	45 052	59	38	21	46	28	2	9	33	14	38 50	25	1 932	6	3	1/
RAM21B4	Ramèle - Bas de verse	12 464	88 510	164 265	1 793	67 729	1 052	153	187	41 266	153	57	7	44	40	2	4	34	14	36	28	1 692	10	3	17
RAM21B5	Ramèle - Bas de verse	14 701	102 112	221 413	786	40 839	2 765	119	223	44 691	60	47	30	95	5	1	4	35	12	34	24	805	5	3	15
RAM21B5	Ramèle - Bas de verse	15 032	91 617	229 436	1 157	36 855	2 799	134	270	44 240	62	62	34	90	20	2	7	34	13	18	25	730	6	3	15
RAM2185	Ramèle - Bas de verse	13 546	117 612	218 559	283	68 780	31 210	306	256	48 273	60	48	48	47	12	2	3	29	12	38	52	2 514	5	3	15
RAM21B6	Ramèle - Bas de verse	9 230	94 575	289 189	1 080	54 938	13 359	219	126	35 252	191	33	6	39	7	2	4	32	13	44	25	1 986	6	9	16
RAM21B6	Ramèle - Bas de verse	13 645	119 883	211 733	749	73 013	11 454	311	342	48 355	60	53	6	47	12	1	3	32	30	44	23	2 308	8	3	15
RAM21B7 RAM21B8	Ramèle - Bas de verse Ramèle - Bas de verse	82 669	27 029	47 015	24 110	7 879	1 032	291	624	131 648	78	77	6 258	33	2 050	144	2	66 35	6	76	147	503 919	12	3	646 10
Mediane	Ramèle - Bas de verse	16 350	83 321	158 837	451	24 018	3 072	97	205	47 401	65	35	71	71	198	2	4	32	13	36	32	786	6	9	15
PAL1	Ramèle - Pied de verse	33 817	54 336	140 667	589	11 730	55 193	88	1 494	69 478	293	32	1 394	150	8 364	6	11	20	42	37	78	659	31	84	188
PAL2	Ramèle - Pied de verse	41 219	70 849	165 310	367	14 960	96 906	100	1 644	65 128	290	31	772	200	5 955	6	13	15	46	61	67	814	30	64	93
PAL3	Ramele - Pied de verse Ramèle - Pied de verse	32 358	54 316	130 628	2 843	11 018	49 859	83 91	2 613	76 639	130	35	1 866	163	9858	11	4	24	16	36	42	538	14	111	300
PAL5	Ramèle - Pied de verse	32 981	85 671	182 189	100	17 954	81 023	116	2 523	52 764	116	49	53	278	716	2	6	66	24	28	40	817	10	46	18
Mediane	Ramèle - Pied de verse	33 399	65 645	162 074	520	13 684	52 526	94	1 591	67 303	135	35	1 083	157	7 159	6	5	28	33	36	46	722	14	74	140
Maximum	Verse Ramèle	285 525	122 820	395 589	47 416	76 120	96 906	1 366	3 255	202 043	449	77	3 531	670	472 158	1 128	19	253	737	935	7 306	2 656	59	19 257	58 514
Mediane	Verse Ramele Verse Ramèle	15 980	69 117	156 150	900	18 / 31	3 988	96	381	48 954	101	32	350	83	28 444	2	4	51	16	40	49	/38	10	45	31
Minimum	Verse Ramèle	1 129	5 593	7 594	60	545	12	24	62	5 019	20	4	6	3	5	1	2	7	6	17	14	71	4	2	9
Mediane	Bâtiments de Nartau	16 477	69 970	125 270	1 546	15 937	21 843	88	664	61 055	127	34	143	98	6 648	6	5	43	17	28	52	606	13	85	20
Mediane	Paléosédiments	16 269	85 542	191 816	134	18 355	2 978	97	811	45 048	109	48	70	132	409	2	6	66	20	33	40	733	10	26	16
Mediane	Sédiments du Grésillou	18 182	101 168	251 067	92	22 362	2 736	115	688	46 929	55	50	64	125	478	2	3	33	10	26	20	589 800	5	19	16
Mediane	Verse annexe de Ramèle	40 426	67 357	125 805	3 056	15 043	41 836	69	1 046	89 158	136	56	1 502	221	8 951	10	4	19	18	51	103	651	12	112	156
Mediane	Verse de Nartau	57 456	47 048	98 806	9 162	17 362	138	107	273	95 690	124	10	55	26	26 573	16	4	78	12	43	65	843	14	18	73
Mediane Movenne dec módiano de	Zone de résidus de four	17 667	86 652	178 840	3 054	18 437	931	99	712	54 475	111	42	74	94	2 745	4	6	66	19	27	36	767	10	43	16
chaque zone d'intérêts	Site d'étude	24 213	73 634	157 436	2 908	17 618	11 170	94	618	63 138	107	36	269	104	6 171	5	5	50	16	35	51	716	10	46	42

*: 80% des concentrations mesurées sont des valeurs <LQ Les concentrations inférieures à la LQ ont été mises à LQ/2 et les certaines données représentent une moyenne de trois mesures triplicat par échantillon

BRGM – La Villanière (11)

Résultats d'investigations et mise à jour du schéma conceptuel (L2b)

Page 190

Référence : R-KC/CCK -2104-1f

Analyses	Carbonates totaux	%S sulfates solubles ⁴	%S sulfures⁴	Sulfates solubles	Mg	AI	S tot	Са	Cr	Fe	Co	Ni	Cu	Zn	As	Ag	Cd	Pb	Bi	Au (LQ)	Au (LD) ¹
Unité	g/Kg	%	%	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
RAM1bis	4	0,9%	99,1%	240	<400	720	9 400	<400	<8,0	5 200	<16,0	<20	<40	58	420 000	140	130	21 000	64 000	<20	8
RAM3	41	4,8%	95,2%	120	11 000	25 000	830	42 000	27	66 000	<16,0	26	220	420	36 000	19	31	2 000	6 900	<20,0	<4,5
RAM4-5	3	20,6%	79,4%	13 000	8 900	16 000	21 000	43 000	18	62 000	<16,0	<20	580	310	26 000	24	30	1 900	5 800	<20	<4,5
RAM6	10	0,4%	99,6%	62	8 000	28 000	5 800	8 700	26	110 000	18	38	460	190	3 400	<0,97	<3,9	55	40	<19,0	<4,4
RAM6-7-10	2	8,3%	91,7%	3 000	4 800	27 000	12 000	4 000	25	160 000	<15,0	40	460	190	6 600	<0,95	<3,8	94	67	<19,0	<4,3
RAM16-18-19	2	1,0%	99,0%	14	7 300	28 000	480	2 200	24	49 000	22	24	160	64	2 500	<0,95	<3,8	83	42	<19,0	<4,3
PAL5	290	n.c.	n.c.	83	30 000	26 000	<330	71 000	30	51 000	<16,0	34	55	250	620	2	<4,0	38	<40	<20	<4,5
PAL1	67	0,3%	99,7%	11	32 000	28 000	1 200	68 000	32	81 000	<16,0	29	1 300	190	6 800	10	<4,1	99	180	<20,0	<4,6
PAL2	190	1,0%	99,0%	27	31 000	17 000	940	80 000	21	73 000	<16,0	29	800	220	5 400	5	<4,0	73	110	<20,0	<4,6
PAL3-4	170	0,3%	99,7%	26	19 000	20 000	2 900	42 000	18	83 000	<16,0	23	1 900	140	11 000	26	<4,0	130	280	<20,0	22²
PAL6-8	11	n.c.	n.c.	20	8 900	34 000	<330	2 700	40	50 000	21	55	260	230	1 100	<0,99	<3,9	25	<39	<20,0	<4,5
% extrait (régale vs. totale) ³	n.c.	n.c.	n.c.	n.c.	n.c.	81%	95%	n.c.	38%	88%	78%	90%	89%	83%	82%	96%	88%	89%	88%	n.c.	n.c.

Tableau 62. Chimie des matériaux de la verse de Ramèle (résultats du laboratoire après minéralisation à l'eau régale)

n.c.: non calculable ou non concerné ; 1 : résultats entre la limite de détection et la limite de quantification ; 2 : issue de la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation à l'eau régale et la minéralisation totale ; 4 : les proportions de S contenu dans les sulfates et les sulfures sont calculées sur la base des concentrations en sulfates déterminées par le laboratoire, selon les hypothèses suivantes : les sulfates sont représentés par le composé SO42- et tout le S non contenu dans les sulfates solubles est contenu dans les sulfates de fer type jaoriste n'étant pas inclus dans les sulfates solubles, le % de sulfures peut être majoré.

Le cartographie des concentrations en arsenic (Figure 72) indique que les plus fortes concentrations sont retrouvées au droit de la zone d'impact à proximité de l'ancienne cheminée (2,4-22%) et les plus faibles concentrations au droit du bas de la verse Ramèle (2,4-22%). La zone d'impact en corps de verse et le pied de verse montrent des concentrations intermédiaires à l'exception de RAM8. En effet, RAM8 tout comme RAM1 ont des concentrations maximales (20% et 22%, respectivement).

La cartographie des concentrations en arsenic au pied de verse de Ramèle érodé par le Grésillou montre que l'échantillon PAL5, le plus souvent ennoyé dans le Grésillou montre la plus faible concentration (Figure 73). L'hypothèse émise est qu'à la différence des autres échantillons qui sont moins soumis au lessivage, la faible concentration en PAL5 est due à la remobilisation de l'arsenic dans le Grésillou.

Figure 73. Cartographie des concentrations en arsenic au pied de verse érodé de Ramèle

En conclusion, les données chimiques et lithologiques indiquent que les matériaux de la verse de Ramèle sont caractérisés par :

- au droit de la zone d'impact de l'ancienne cheminée : des sols contenant des blocs de stériles et de minerais, dont la fraction fine est riche en arsenic, probablement contenu dans de l'anhydride arsénieux en proportion variable;
- au droit de la zone d'impact du corps de verse : des sols contenant des blocs de stériles et de minerais, moyennement arséniés contenant localement de l'anhydride arsénieux (RAM8);
- au droit du bas de verse : des sols végétalisés faiblement arséniés ;
- au droit du pied de verse érodé par le Grésillou : des stériles plus ou moins indurés, moyennement arséniés.

8.5.6.2 Chimie des fractions granulométriques < 2 mm

La fraction fine d'un échantillon composite situé au pied de verse érodé (PAL2-3) a fait l'objet d'analyses granulochimique consistant en l'analyse chimique des fractions granulométriques suivantes :

- 0-63 µm ;
- 63-200 µm ;
- 200-2000 µm.

Les résultats sont présentés dans le Tableau 63 et la Figure 74. Ils montrent que :

- les concentrations en les éléments mesurés sont d'autant plus élevées que les fractions sont fines. Pour l'échantillon analysé, l'arsenic est 4,3 fois plus concentré dans la fraction 0-63 μm et 2,4 fois plus concentrée dans la fraction 63-200 μm que dans la fraction 200-2000 μm ;
- la fraction la moins fine (200-2000 µm) a une masse relative qui représente environ la moitié de la masse totale, alors que des autres fractions ont des masses relatives équivalentes et représentent chacune ¼ de la masse de l'échantillon.

Les concentrations et les masses relatives de chaque fraction évoluant différemment, des contributions en arsenic de chaque fraction sur la concentration de la fraction globale ont été calculées par pondération (Figure 50). Les résultats montrent que la fraction la plus fine contribue à la moitié du stock d'arsenic dans l'échantillon. En effet, de la fraction la moins fine à la plus fine leur contribution en arsenic est respectivement de 22, 26 et 56%.

En conclusion, l'étude de la distribution en arsenic dans les différentes fractions granulométriques <2 mm d'un échantillon du pied de verse de Ramèle, montre que la majeure partie de l'arsenic est contenue dans la fraction 0-63 μ m, la plus mobilisable et lixiviable. On note toutefois la présence locale de matériaux indurés.

Tableau 63. Granulochimie des matériaux de pied de verse Ramèle érodé par le Grésillou

ID échantilon	Fraction	Masse relative	[As]	[As]fraction fine/[As]fraction grossière	Q[As] relatif	Q[As]	carbonates totaux	sulfates	Au	AI	Ag	As	Bi	Cd	Са	Co	Cr tot	Fe	Mg	Ni	Pb	Cu	Zn	S tot
PAL3-4	0-2000	100%	11000	n.c.	100%	11000	170	26	<20,0	20000	26	11000	280	<4,0	42000	<16,0	18	83000	19000	23	130	1900	140	2900
PAL3-4	200-2000	49%	4901	1,0	22%	2387	167	7	<20,0	4914	24	4901	103	<4,0	31515	<16,0	3	47105	9791	15	68	371	80	2229
PAL3-4	63-200	24%	12000	2,4	26%	2880	210	33	<19,0	29000	16	12000	310	<3,8	61000	24	28	91000	32000	30	130	2500	170	2100
PAL3-4	0-63	27%	21000	4,3	52%	5733	140	53	<20,0	39000	38	21000	570	3,9	44000	17	36	140000	24000	31	240	4100	220	4800

* : la concentration en As pour la fraction 200-2000 microns est déduite par calcul du bilan de concentation massique à l'aide notamment des masses relatives ; en présence de LQ les calculs ont concerné la LQ/2

Figure 74. Distribution et contribution des concentrations en arsenic au sein des fractions granulométriques ; à gauche : concentration pour chaque fraction ; au milieu : proportions massiques relatives des fractions ; à droite : contribution en arsenic pour chaque fraction.

8.5.7 Minéralogie et distribution des éléments

La minéralogie et la distribution des éléments sont appréhendées par les analyses DRX et d'extractions séquentielles. Les échantillons analysés correspondent aux échantillons de fraction fine des matériaux de la zone d'impact à proximité de l'ancienne cheminée de pied de verse érodée de Ramèle (RAM1bis, PAL3-4 et PAL5).

8.5.7.1 Résultats d'analyses DRX

Les résultats des analyses DRX sont fournis dans le Tableau 64 et la Figure 75. Les analyses DRX étant moins précises que les analyses ICP, des bilans massiques ont été calculés pour l'arsenic, le soufre et le fer, sur la base des proportions modales puis comparés aux analyses ICP (Tableau 64).

Matériaux de la zone d'impact à proximité de l'ancienne cheminée de la fonderie

Les matériaux de la zone d'impact à proximité de l'ancienne cheminée comportent 86% d'arsénolite (i.e. anhydride arsénieux) et quelques phases accessoires correspondant à :

- des silicates :
 - 10% de zéolites ;
 - 2% de chlorite ;
 - 2,1% de feldspath ;

La concentration en arsenic mesurée à l'ICP suggère que la proportion en arsénolite est surestimée par les analyses DRX.

Matériaux du pied de verse érodé par le Grésillou

Les matériaux constituant le pied de verse érodé par le Grésillou comportent entre 63 et 77% de silicates dont les principaux sont le quartz (33-44%), les mica blanc (alurgite ou muscovite ; 18-32%), et dans une moindre mesure les feldspath (9%), les argiles (kaolinite et montmorillonite ; 0,9-2,4%), et les chlorites (0,4%). On note aussi la présence de carbonates (dolomite ; 21-34%). Ces compositions minéralogiques indiquent que ces matériaux dérivent de roches silico-clastiques, avec une forte composante carbonatée, pouvant correspondre à des calcschistes.

Les autres phases minérales correspondent :

- à des oxydes de fer : ferreux/ferrique (Fe²⁺ et Fe³⁺; magnétite ; 0,2-2,1%) ou ferrique (Fe³⁺; goethite ; 0-0,1% et hématite 0-0,9) ;
- à des sulfures : la chalcopyrite (0,9%).

Aucune phase arséniée n'est mise en évidence par les résultats d'analyse DRX. Or sur la base des concentrations déterminées à l'ICP, 1,5 % et 710 mg/kg d'arsenic sont présents dans les échantillons PAL3-4 et PAL5, respectivement. Ce défaut de bilan en As s'explique soit :

- par la présence d'As dans les phases potentiellement porteuse d'As (argiles, les carbonates, oxydes de fer, sulfures, sulfates). Leurs proportions sont néanmoins trop faibles pour expliquer le défaut de bilan en As. Les bilans déficitaires en Fe et S, suggère une sous-estimation des oxy(hydro)ydes de fer, potentiellement porteuse;
- 2) et/ou par l'absence de détection de phases arséniés ;
- 3) et /ou par un biais d'échantillonnage ou une hétérogénéité de l'échantillon.

Tableau 64. Minéralogie des matériaux de la verse Ramèle et bilan de concentration en arsenic, fer et soufre

Minéral	Formule	Poids moléculaire du minéral (g)	% massique As	% massique Fe	% massique S	RAM1bis	PAL3-4	PAL5
Silicates						10	77	63
Quartz	SiO ₂						44	33
Groupe micas (aluminosilicate)						2	32	18
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂					1,9	0	18
Séricite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂					0	0	0
Allurgite	$K(AI,Mn^{3+})_2(AISi_3O_{10})(OH)_2$					0	31,7	0
Phengite	KAl _{1.5} (Mg) _{0.5} (Al _{0.5} Si _{3.5} O ₁₀)(OH) ₂					0	0	0
Groupe chlorites (aluminosilicate)		4014		4.4.0/		0,0	0,0	0,4
Chiorite	(Fe,Mg,AI) ₆ (SI, AI)40 ₁₀ (OH) ₈	1014		11%		0	0	0,4
	$Mg_5AI(AISI_3O_{10})(OH)_8$	700		220/		0	0	0
Chamosite Groupo foldenathe (aluminosilisato)	(Fe ,Mg,AI,Fe) ₆ (SI,AI) ₄ O ₁₀ (OH,O) ₈	780		22%		21	0	0
Feldsnath						2,1	0,0	89
Albite	Na(AlSi ₃ O ₈)					0	0	0
Ca-Na-Feldspath	(Ca.Na)(Al ₂ Si ₂ O ₂)					0	0	0
Na-feldspath	Na(Al2Si2O8)					0	0	0
Sr-Al feldspath	Sr/Ca/Na(Al2Si2O8)					2,1	0	0
Groupe argiles (aluminosilicate)						0,0	0,9	2,4
Montmorillonite	(Na, Ca) _{0,33} (Al,Mg) ₂ (Si ₄ O ₁₀)(OH) ₂ .nH2O					0	0	2,1
Kaolinite	Al ₂ (Si ₂ O ₅)(OH) ₄					0	0,9	0,3
Illite	K _{0.65} Al _{2.0} [Al _{0.65} Si _{3.35} O ₁₀](OH) ₂					0	0	0
Groupe zéolite (aluminosilicate)						5,8	0	0
Zéolite	Si, Al, K, Na, Ca hydraté					5,8	0	0
Sr,CS zeolite						0.0	11	3 1
Magnetite	Fe ²⁺ Fe ³⁺ .0	176		64%		0,0	0.2	2.1
Titanomagnétita	$Fe^{2^{+}}(Fe^{3^{+}} Ti) O$	176		64%		0	0,2	2,1
Coothito	re (re ,1) ₂ O ₄	2/0		629/		0	0	1
Homotito	α-re 0(0H)	160		05%		0	0.0	1
	re ₂ O ₃	100		03%		0	0,9	0
Scorodite	Ee ³⁺ AsO , 2H,O	221	37%	24%		0	0	0
Arsénite		231	52/0	2470		86.4	0	0
Arsénolite	As ₂ O ₃	198	75%			86,4	0	0
Groupe sulfures						3,8	0,9	0,9
Chalcopyrite	CuFeS ₂	184		31%	35%	3,8	0,9	0,9
Pyrite	FeS₂	120		47%	53%	0	0	0
Arsénopyrite	FeAsS	163	46%	34%	20%	0	0	0
Orpiment	AsS	107	70%		30%	0	0	0
Groupe sulfates						0	0	0
Sulfate de Cs	CS ₂ SO ₄	362			9%	0	0	0
Jarosite	KFe ⁻¹ ₃ (SO ₄) ₂ (OH) ₆	501		13%	13%	0	0	0
Groupe carbonates	C-CO					U	21,2	33,5
Calcite						0	0	22.5
Groups phosphates						0	21,2	33,5
Berlinite	AIPO.					0	0	0
Autres	All 04					0	0	0
Na, Cs Fullérène c60						0	0	0
	Bilan As							
% phases arséniées						86,4	0	0
As calculé (stochiométrie ; ppm)						645818	0	0
As ICP totale (ppm)						440000	15000	710
Blian (ICP-DKX) Phases potentiellement arséniées (% · nar ordre de probabilité selon les ph	asos dátáctás	•)			-205818,2	2	710
Phase probable 1			,			5	Hmt	Arg
Phase probable 2							Arg	Mgt
Phase probable 3							Mgt	Goe
Phase probable 4								
Fa an Invité (ata ata)	Bilan Fe					11 507	0.000	22.044
Fe ICP totale (stocniometrie ; ppm)						6 800	9 869	57 000
Bilan (ICP-DRX)						-4 797	86,131	34,156
	Bilan S							2.100
% massique S calculé (stochiométrie	e)					13253	3139	3139
S ICP totale (ppm)						9 200	2 700	165
Bilan (ICP-DRX)						-4 053	-439	-2 974
	phase arseniee phase potentiellement arséniée							

Abbréviation : Arg : argile ; Mgt : magnétite ; Ti-Mgt : titanomagnétite ; Hmt : Hématite ; Goe : giéthite ; Jar : jarosite ; Ber : belinite. en rouge : bilan négatif entre la concentration en As calculé selon les proportions minéralogiques et la concentration en As déterminé à l'ICP

Figure 75. Proportions minéralogiques des matériaux de la verse Ramèle

8.5.7.2 Résultats des extractions séquentielles

Les résultats des extractions séquentielles sont exprimés en mg/kg dans le Tableau 65. Ils sont également exprimés en pourcentage extrait dans le Tableau 66 en considérant la concentration extraite la plus haute parmi la somme des concentrations des fractions F0+F1+F2+F3 et la concentration de la minéralisation totale, afin de normaliser les résultats à 100%. En effet, le Tableau 65 montre que pour certains éléments comme le fer et le magnésium, les extractions séquentielles sont plus efficaces que la minéralisation totale et montrent des bilans positifs. Les extractions de la fraction F0 seront discutées dans la section suivante.

Nous rappelons que les objectifs des extractions séquentielles sont de quantifier les éléments extraits pour les fractions suivantes :

- F0 : fractions lixiviable ;
- F1 : fraction adsorbée sur les surfaces minérales (e.g. argiles) ;
- F2 : fraction réductibles (oxy/hydroxydes) ;
- F3 : fraction oxydable (sulfures et matière organique) ;
- RES : fraction résiduelle (silicates).

Les résultats des extractions séquentielles de l'échantillon RAM1bis mettent en évidence les éléments suivants :

- l'aluminium est en grand majorité issue de la fraction résiduelle RES (84%) en accord avec sa distribution dans les silicates, mais aussi dans la fraction F2 (14%) indiquant qu'il se trouve dans les silicates et les oxy/hydroxydes d'aluminium;
- le bismuth est retrouvé à 4% dans la fraction réductible F2, et à 95% dans la fraction résiduelle ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le calcium est extrait en majorité dans la fraction résiduelle RES (64%) et dans la fraction F0 (21%) signifiant qu'il est dans des silicates;
- le magnésium est retrouvé à 50% dans la fraction F0 signifiant qu'il n'est pas ou peu contenu dans les silicates ;
- le plomb est retrouvé à 95% dans la fraction résiduelle ;
- le zinc est retrouvé à 44% dans la fraction réductible F2, 47% dans la fraction résiduelle RES et 6% dans la fraction oxydable F3 ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le fer est extrait dans la fraction réductible F2 (22%) et dans la fraction résiduelle RES (77%). Cela indique qu'il est contenu dans des oxy/hydroxydes ou des sulfures ;
- le soufre est extrait dans toutes les fractions : F0 (3%), F1 (5%), F2 (69%), F3 (3%) et résiduelle RES (19%). Cela indique qu'il est principalement inclus dans des sulfates plus ou moins solubles dans l'eau et des sulfures ;
- l'arsenic est extrait de façon relativement significative dans les fractions F0 (38%), et F1 (26%), F2 (26%) et F3 (11%) en accord avec sa présence dans l'anhydride arsénieux.

Les résultats des extractions séquentielles des échantillons PAL3-4 et PAL5 mettent en évidence les éléments suivants :

- l'aluminium est en grand majorité issu de la fraction résiduelle RES (78-81%) en accord avec sa distribution dans les silicates, mais aussi dans la fraction F2 (19-22%) indiquant qu'il se trouve dans les silicates et les oxy/hydroxydes d'aluminium ;
- le bismuth est retrouvé à 3-32% dans la fraction réductible, 68-94% dans la fraction résiduelle RES et 0-3% dans la fraction oxydable F3 ce qui suggère qu'il est distribué

dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;

- le calcium est extrait en majorité dans la fraction résiduelle RES (95-96%) signifiant qu'il est dans des silicates, ou des carbonates peu solubles ;
- le magnésium est retrouvé de 0 à 52% dans la fraction résiduelle RES signifiant qu'il n'est pas ou moyennement contenu dans les silicates ;
- le plomb est retrouvé à 24-36% dans la fraction réductible F2, 60-76% dans la fraction résiduelle RES ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le zinc est retrouvé à 36-43% dans la fraction réductible F2, 46-58% dans la fraction résiduelle RES et 4-9% dans la fraction oxydable F3 ce qui suggère qu'il est distribué dans des sulfures de fer partiellement dissous lors des extractions et/ou des oxy/hydroxydes de fer facilement dissous lors de l'étape 2 ;
- le fer est extrait dans la fraction réductible F2 (77-99%) dans la fraction résiduelle RES (0-23%) et dans la fraction oxydable F3 (1%). Cela indique qu'il est en contenu dans des oxy/hydroxydes et des sulfures et des sulfates de fer ;
- le soufre est extrait dans toutes les fractions : F0 (1-9%), F1 (1-16%), F2 (33-68%), F3 (9-13%) et résiduelle RES (43-64). Cela indique qu'il est principalement inclus dans des sulfates plus ou moins solubles dans l'eau et des sulfures (min 50%);
- l'arsenic est extrait de façon relativement significative dans les fractions F0 (2-5%), et F1 (13-14%) ce qui suggère qu'il est désorbé de surfaces minérales et/ou contenu dans des sel/sulftaes solubles. Il est en majeure partie extrait dans la fraction réductrice F2 (67-85%), et légèrement dans le fraction résiduelle RES (15-17%). Cela indique qu'il est principalement associé aux oxy(hydro)xydes de fer et/ou aux sulfates de fer, et de façon minoritaire aux sulfures encore présents dans la fraction résiduelle.

ID échantillon	Fraction	AI	As	Bi	Са	Fe	Mg	Pb	S	Zn
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	F0	13,5	207 000	77,2	75,0	17,0	32,0	171,00	320,0	3,0
	F1	30	143 743	326	13	231	16	462	513	<1
	F2	364	140 733	2 120	4	4 193	11	455	7 197	37
DAMA	F3	8	57 986	0	37	2	5	18,9	336	5
RAINIDIS	RES	2 162	0,0	52 116	229,3	14 588	0	22 745	2 001	40
	Total fractions	416	549 462	2 523	129	4 442	64	1 106	8 366	45
	Minéralisation totale	2 578	445 687	54 640	359	19 030	56	23 851	10 368	85
	Résidus* (%)	84%	-23%	95%	64%	77%	-13%	95%	19%	47%
	F0	37,0	261,0	0,3	656,0	48,0	76,0	0,1	16,0	<0,5
	F1	17	1 689	0	747	17	154	0	25	2
	F2	5 681	11 354	89	34	46 658	3 317	32	624	60
DAL 2-4	F3	31	5	0	103	456	1 660	0,1	361	7
FAL3-4	res	24 310	42	188	38 935,2	13 741	5 707	101	1 810	97
	Total fractions	5 767	13 308	89	1 540	47 178	5 207	32	1 027	69
	Minéralisation totale	30 077	13 350	278	40 475	60 920	10 914	133	2 837	166
	Résidus* (%)	81%	0%	68%	96%	23%	52%	76%	64%	58%
	F0	23,0	35,4	<0,01	495,0	6,1	70,0	0,08	34,6	0,5
	F1	16	113	0	384	1	212	2	60	3
	F2	5 485	529	2	38	28 222	4 913	20	82	96
DALS	F3	10	3	2	886	354	1 658	0,3	32	20
FALJ	RES	19 238	104,5	56	31 590,4	0	0	34	157	102
	Total fractions	5 533	680	3	1 803	28 583	6 854	23	208	120
	Minéralisation totale	24 771	784	59	33 394	27 011	4 886	57	365	221
	Résidus* (%)	78%	13%	94%	95%	-6%	-40%	60%	43%	46%

Tableau 65. Résultats d'extractions séquentielles en mg/kg pour les matériaux de la verse de Ramèle

* : Résidus% = (Minéralisation totale - Total fractions)/ Minéralisation totale

ID échantillon	Fraction	AI	As	Bi	Ca	Fe	Mg	Pb	S	Zn
		%	%	%	%	%	%	%	%	%
	F0	0,524%	37,673%	0,141%	20,904%	0,089%	50,309%	0,717%	3,086%	3,527%
	F1	1%	26%	1%	4%	1%	25%	2%	5%	1%
RAM1bis	F2	14%	26%	4%	1%	22%	17%	2%	69%	44%
	F3	0%	11%	0%	10%	0%	7%	0%	3%	6%
	RES	84%	0%	95%	64%	77%	0%	95%	19%	47%
	F0	0,123%	1,955%	0,104%	1,621%	0,079%	0,696%	0,090%	0,564%	0,151%
	F1	0%	13%	0%	2%	0%	1%	0%	1%	1%
PAL3-4	F2	19%	85%	32%	0%	77%	30%	24%	22%	36%
	F3	0%	0%	0%	0%	1%	15%	0%	13%	4%
	RES	81%	0%	68%	96%	23%	52%	76%	64%	58%
	F0	0,093%	4,513%	0,008%	1,482%	0,021%	1,021%	0,148%	9,479%	0,244%
	F1	0%	14%	0%	1%	0%	3%	4%	16%	1%
PAL5	F2	22%	67%	3%	0%	99%	72%	36%	22%	43%
	F3	0%	0%	3%	3%	1%	24%	0%	9%	9%
	RES	78%	13%	94%	95%	0%	0%	60%	43%	46%

Tableau 66. Résultats d'extractions séquentielles en % extrait pour les matériaux de la verse de Ramèle

En raison de l'importance de de la fraction extractible à l'eau (F0) et de ses faibles concentration, les chiffres significatifs après la virgule ont volontairement été ralongés. Les résultats sont normalisés à 100%, en utilisant la plus grande des concentrations parmi celle issue de la minéralisation totale ou de la somme des fractions

En conclusion, l'étude de la distribution en arsenic dans les phases minérales montre qu'il est :

- contenu principalement dans l'anhydride arsénieux pour l'échantillon RAM1bis situé dans la zone d'impact de l'ancienne cheminée ;
- contenu (± adsorbé) dans des oxy(hydro)xydes et les sulfates de fer et dans des sels/sulfates solubles pour les échantillons du pied de verse érodé par le Grésillou.

8.5.8 Transfert des éléments

Les transferts liés au ruissellement de l'eau de pluie en surface et la lixiviation sont appréhendés par les tests de lixiviation. Les résultats de lixiviation sont présentés dans le Tableau 65, le Tableau 66et le Tableau 67.

Les résultats de lixiviation au cours des extractions séquentielles montrent les éléments suivants :

- pour les matériaux de pied de verse :
 - les éléments les plus mobilisables dans l'eau sont l'arsenic (moy=3,2%), le soufre (moy=5%), le calcium (moy=1,5%) et le magnésium (moy=0,9%);
 - les éléments peu mobilisables dans l'eau sont le zinc (0,197%), le plomb (0,119%), l'aluminium (0,108%) le bismuth (0,056%) et le fer (0.050%) ;
 - l'arsenic est plus mobilisable dans l'échantillon PAL5 plus souvent ennoyé dans le Grésillou que PAL3-4 ;
- pour les matériaux de la zone d'impact à proximité de l'ancienne cheminée :
 - la mobilité relative des éléments est la même, néanmoins les concentrations des éléments lixiviables est plus grandes d'un ordre de grandeur pour l'arsenic, le calcium, le magnésium et le zinc ;

 pour une concentration de 54,9% d'arsenic dans l'échantillon brut RAM1bis, 20,7% d'arsenic est lixiviable (i.e. une proportion de 38% de l'arsenic du brut est lixiviable).

Les résultats de lixiviation issu des pack ISDI montrent les éléments suivants :

- parmi les éléments mesurés, les éléments ou composés lixiviables sont les suivants : Al, As, Ca, Mg, Pb, Zn, S, Cu, Fe, Ni, Ba, Co, Cr, Sb Ag Mo, Fl⁻, Cl⁻ et SO₄²;
- les éléments les plus mobilisables dans l'eau sont le calcium (moy=11%) et le soufre (moy=22%);
- les éléments peu mobilisables dans l'eau sont le magnésium (1,36%) et le nickel (1,9%);
- les éléments les moins mobilisables dans l'eau sont l'aluminium (moy=0,008%), le plomb (moy=0,050%), le zinc (moy=0,191%) et le cuivre (moy=0,025%);
- la mobilisation de l'arsenic est variable :
 - très faible pour les matériaux de l'impact du corps de verse (hors RAM8 ; RAM6-7-10 : 0,025%) ;
 - faible pour les matériaux du bas de verse (moy=0,065%)
 - relativement importante pour les matériaux de l'impact de l'ancienne cheminée (RAM4-5 : 1,0%), en accord avec la présence d'anhydride arsénieux. En effet, pour une concentration de 14 000 mg/kg d'arsenic dans l'échantillon brut, 140 mg/kg sont lixiviables.

Un tableau de synthèse (Tableau 68) décrit les paramètres et les résultats des tests de lixiviation pour l'arsenic.

Analyses	AI	As	Са	Mg	Pb	Zn	S tot	Cu	Ва	Co	Cr	Fe	Ni
Unité	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RAM4-5 (brut)	10 000	14 000	54 000	22 000	760	280	8 700	510	n.a.	<16,0	11	91 000	<20
RAM4-5 (éluat)	<0,200	140	6 200	220	<0,0100	<0,050	4 700	0,03	0,42	<0,00500	<0,0100	<0,100	<0,0100
RAM4-5 (% lixiviable)	n.c.	1,000%	11,5%	1,00%	n.c.	n.c.	54,0%	0,005%	n.c.	n.c.	n.c.	n.c.	n.c.
RAM6-7-10 (brut)	41 000	3 600	4 600	6 800	45	110	9 500	230	n.a.	<16,0	35	100 000	21
RAM6-7-10 (éluat)	<0,200	0,140	830	180	<0,0100	0,210	940	0,027	0,052	0,420	<0,0100	<0,100	0,400
RAM6-7-10 (% lixiviable)	n.c.	0,004%	18,0%	2,65%	n.c.	0,191%	9,9%	0,012%	n.c.	n.c.	n.c.	n.c.	1,905%
RAM16-18-19 (brut)	32 000	2 600	3 800	8 600	28	51	770	150	n.a.	16	26	50 000	22
RAM16-18-19 (éluat)	2,6	1,7	160	38	0,01	<0,050	6,4	0,09	0,29	<0,00500	<0,0100	2,4	<0,0100
RAM16-18-19 (% lixiviable)	0,008%	0,065%	4,2%	0,44%	0,050%	n.c.	0,831%	0,057%	n.c.	n.c.	n.c.	0,005%	n.c.
Analyses	Fľ	phénol	(indice)	Cľ	SO ₄ ²⁻	Sb	Hg	Мо	Se	Au	Bi	Ag	Cd
Analyses Unité	FI ⁻ mg/kg	phénol mg	(indice) /kg	CI ⁻ mg/kg	SO 4 ²⁻ mg/kg	Sb mg/kg	Hg mg/kg	Mo mg/kg	Se mg/kg	Au mg/kg	Bi mg/kg	Ag mg/kg	Cd mg/kg
Analyses Unité RAM4-5 (brut)	FI [°] mg/kg n.a.	phénol mg n.	(indice) /kg a.	Cl ⁻ mg/kg n.a.	SO4 ²⁻ mg/kg n.a.	Sb mg/kg n.a.	Hg mg/kg n.a.	Mo mg/kg n.a.	Se mg/kg n.a.	Au mg/kg <20	Bi mg/kg 2200	Ag mg/kg 3	Cd mg/kg 13
Analyses Unité RAM4-5 (brut) RAM4-5 (éluat)	FI mg/kg n.a. <5	phénol mg n. <5	(indice) /kg a. ,00	CI mg/kg n.a. <50	SO ₄ ²⁻ mg/kg n.a. 15 000	Sb mg/kg n.a. 3,60	Hg mg/kg n.a. <0,00200	Mo mg/kg n.a. 0,01	Se mg/kg n.a. <0,0100	Au mg/kg <20 <0,200	Bi mg/kg 2200 <0,400	Ag mg/kg 3 <0,0100	Cd mg/kg 13 <0,00400
Analyses Unité RAM4-5 (brut) RAM4-5 (éluat) RAM4-5 (% lixiviable)	FI mg/kg n.a. <5 n.c.	phénol mg n. <5.	(indice) /kg a. ,00 a.	CI mg/kg n.a. <50 n.c.	SO ₄ ²⁻ mg/kg n.a. 15 000 n.c.	Sb mg/kg n.a. 3,60 n.c.	Hg mg/kg n.a. <0,00200 n.c.	Mo mg/kg n.a. 0,01 n.c.	Se mg/kg n.a. <0,0100 n.c.	Au mg/kg <20 <0,200 n.c.	Bi mg/kg 2200 <0,400 n.a.	Ag mg/kg 3 <0,0100 n.c.	Cd mg/kg 13 <0,00400 n.c.
Analyses Unité RAM4-5 (brut) RAM4-5 (éluat) RAM4-5 (% lixiviable) RAM6-7-10 (brut)	FI mg/kg n.a. <5 n.c. n.a.	phénol mg n. <5 n.	(indice) /kg a. .00 a. a.	Cl mg/kg n.a. <50 n.c. n.a.	SO₄²⁻ mg/kg n.a. 15 000 n.c. n.a.	Sb mg/kg n.a. 3,60 n.c. n.a.	Hg mg/kg n.a. <0,00200 n.c. n.a.	Mo mg/kg n.a. 0,01 n.c. n.a.	Se mg/kg n.a. <0,0100 n.c. n.a.	Au mg/kg <20 <0,200 n.c. <20	Bi mg/kg 2200 <0,400 n.a. <40	Ag mg/kg 3 <0,0100 n.c. <1,00	Cd mg/kg 13 <0,00400 n.c. <4,0
Analyses Unité RAM4-5 (brut) RAM4-5 (éluat) RAM4-5 (% lixiviable) RAM6-7-10 (brut) RAM6-7-10 (éluat)	FI mg/kg n.a. <5 n.c. n.a. <0,50	phénol mg n. <5 n. <5 n. <5	(indice) /kg a. .00 a. a. .00	Cl mg/kg n.a. <50 n.c. n.a. 20,00	SO₄²⁻ mg/kg n.a. 15 000 n.c. n.a. 3 200	Sb mg/kg n.a. 3,60 n.c. n.a. <0,00500	Hg mg/kg n.a. <0,00200 n.c. n.a. 0,002	Mo mg/kg n.a. 0,01 n.c. n.a. <0,00500	Se mg/kg n.a. <0,0100 n.c. n.a. <0,0100	Au mg/kg <20 <0,200 n.c. <20 <0,200	Bi mg/kg 2200 <0,400 n.a. <40 <0,400	Ag mg/kg 3 <0,0100 n.c. <1,00 <0,0100	Cd mg/kg 13 <0,00400 n.c. <4,0 <0,00400
Analyses Unité RAM4-5 (brut) RAM4-5 (éluat) RAM4-5 (% lixiviable) RAM6-7-10 (brut) RAM6-7-10 (éluat) RAM6-7-10 (% lixiviable)	FI mg/kg n.a. <5 n.c. n.a. <0,50 n.c.	phénol mg n. <5. n. <.5. n. <.5. n.	(indice) /kg a. .00 a. a. .00 a.	Cl mg/kg n.a. <50 n.c. n.a. 20,00 n.c.	SO ₄ ²⁻ mg/kg n.a. 15 000 n.c. 3 200 n.c.	Sb mg/kg n.a. 3,60 n.c. n.a. <0,00500 n.c.	Hg mg/kg n.a. <0,00200 n.c. n.a. 0,002 n.c.	Mo mg/kg n.a. 0,01 n.c. <0,00500 n.c.	Se mg/kg n.a. <0,0100 n.c. <0,0100 n.c.	Au mg/kg <20 <0,200 n.c. <20 <0,200 n.c.	Bi mg/kg 2200 <0,400 n.a. <40 <0,400 n.a.	Ag mg/kg 3 <0,0100 n.c. <1,00 <0,0100 n.c.	Cd mg/kg 13 <0,00400 n.c. <4,0 <0,00400 n.c.
Analyses Unité RAM4-5 (brut) RAM4-5 (éluat) RAM4-5 (% lixiviable) RAM6-7-10 (brut) RAM6-7-10 (éluat) RAM6-7-10 (% lixiviable) RAM16-18-19 (brut)	FI mg/kg n.a. <5 n.c. n.a. <0,50 n.c. n.a.	phénol mg n. <5 n. <.5 n.	(indice) /kg a. .000 a. a. .000 a. a.	CI mg/kg n.a. <50 n.c. n.a. 20,00 n.c. n.a.	SO ₄ ²⁻ mg/kg n.a. 15 000 n.c. n.a. 3 200 n.c. n.a.	Sb mg/kg n.a. 3,60 n.c. <0,00500 n.c. n.a.	Hg mg/kg n.a. <0,00200 n.c. n.a. 0,002 n.c. n.a.	Mo mg/kg n.a. 0,01 n.c. <0,00500 n.c. n.a.	Se mg/kg n.a. <0,0100 n.c. <0,0100 n.c. n.a.	Au mg/kg <20 <0,200 n.c. <20 <0,200 n.c. <20,0	Bi mg/kg 2200 <0,400 n.a. <40 <0,400 n.a. <41	Ag mg/kg 3 <0,0100 n.c. <1,00 <0,0100 n.c. <1,00	Cd mg/kg 13 <0,00400 n.c. <4,0 <0,00400 n.c. <4,1
AnalysesUnitéRAM4-5 (brut)RAM4-5 (éluat)RAM4-5 (% lixiviable)RAM6-7-10 (brut)RAM6-7-10 (éluat)RAM6-7-10 (% lixiviable)RAM6-7-10 (% lixiviable)RAM16-18-19 (brut)RAM16-18-19 (éluat)	FI mg/kg n.a. <5 n.c. n.a. <0,50 n.c. n.a. 0,98	phénol mg n. <5. n. <5. n. <5. n. <5. n. <5. n. <5.	(indice) /kg a. ,00 a. a. ,00 a. a. a.	CI mg/kg n.a. <50 n.c. n.a. 20,00 n.c. n.a. 5,90	SO ₄ ²⁻ mg/kg n.a. 15 000 n.c. n.a. 3 200 n.c. n.a. 25	Sb mg/kg n.a. 3,60 n.c. n.a. <0,00500 n.c. n.a. <0,00500 n.c. n.a. <0,00500	Hg mg/kg n.a. <0,00200 n.c. n.a. 0,002 n.c. n.a. <0,00200	Mo mg/kg n.a. 0,01 n.c. <0,00500 n.c. n.a. <0,00500	Se mg/kg n.a. <0,0100 n.c. n.a. <0,0100 n.c. n.a. <0,0100	Au mg/kg <20 <0,200 n.c. <20 <0,200 n.c. <20,0 <0,200	Bi mg/kg 2200 <0,400 n.a. <40 <0,400 n.a. <41 <0,400	Ag mg/kg 3 <0,0100 n.c. <1,00 <0,0100 n.c. <1,00 <0,0100	Cd mg/kg 13 <0,00400 n.c. <4,0 <0,00400 n.c. <4,1 <0,00400

Tableau 67. Proportion des éléments lixiviables (%) issues des essais de lixiviation de pack ISDI

n.a. : non analysé ; n.c. : non calculable

N.B. : les paramètres organiques analysés dans le cadre des pack ISDI sont tous inférieurs aux LQ et ne sont donc pas traités ici. Ils sont toutefois annexés au rapport.

Zone ciblée	Impact à pro chén	oximité de la ninée	Impact "corps de verse"	Bas de verse	Pied de verse			
Echantillon	RAM1bis	RAM4-5	RAM6-7-10	RAM16-18- 19	PAL3-4	PAL5		
Fraction granulométrique	2 mm		4 mm		2 mm			
Rapport L/S	100		10	100				
Durée	16h		24h		16h			
[As] éluat (mg/l)	2 070	14	0,014	0,17	2,610	0,354		
[As] brut (mg/kg)	549 462	14 000	3 600	2 600	13 350	784		
[As] éluat (mg/kg)	207 000	140	0,14	1,7	261	35,4		
Proportion d'arsenic lixiviable (% brut)	37,67%	1,00%	0,004%	0,065%	1,96%	4,52%		

Tableau 68. Synthèse des paramètres et résultats de lixiviation des échantillons de la verse de Ramèle

En conclusion, l'étude du transfert en arsenic dans les eaux de lixiviation des matériaux de Ramèle montre que l'arsenic est :

- faiblement mobilisable pour les matériaux de l'impact du corps de verse, lorsqu'ils sont dépourvus d'anhydride arsénieux ;
- relativement plus mobilisable pour les sols végétalisés du bas de la verse ;
- fortement mobilisable pour les matériaux du pied de verse en raison de la désorption de l'arsenic des carbonates son association avec des sel/sulfates solubles et de la grande proportion d'arsenic contenue dans les fractions fines, en particulier pour l'échantillon le plus ennoyé dans le Grésillou;
- fortement mobilisable pour les matériaux de l'impact de l'ancienne cheminée, d'autant plus que l'anhydride arsénieux (sous forme de poudre fine) est abondant.

8.5.9 Synthèse de la caractérisation des matériaux de la verse Ramèle

Les caractéristiques physiques, chimiques, et lithologiques des matériaux de la verse Ramèle sont présentées dans le tableau ci-dessous.

Tableau 69. Caractéristiques physiques, chimiques, et	t lithologiques des matériaux de la verse Ramèle
---	--

	Zone d'impact de l'ancienne cheminée	Zone d'impact du corps de verse	Bas de verse	Pied de verse
Granulométrie (proportions massiques)	39% de graves et blocs et 61% de fraction fine (<2mm) Présence locale de poudre blanche très fine	70% de graves et blocs et 30% de fraction fine (<2 mm) Présence locale de poudre blanche très fine	76% de graves, blocs et racine et 24% de fraction fine (<2 mm)	72% de graves et blocs et 28% de fraction fine (<2 mm) Fraction fine : - 49% 200-2000 μm - 24% 63-200 μm - 27% 0-63 μm
Lithologie/minéralogie	 Fraction fine : Sable et limon Phases arséniées : anhydride arsénieux localement Fraction grossière : Schiste et pelite stériles, matériaux oxydés, scories, et minerais altérés à scorodite Phases arséniées et potentiellement arséniées : scorodite 	Fraction fine : • Sable et limon • Phases arséniées : anhydride arsénieux localement Fraction grossière : • Quartzites • Schistes blancs • Schistes oxydés • Minerai altéré à scorodite	Fraction fine : Limon Fraction grossière : • Schistes • Pélites avec ou sans veines de quartz • Argilite • Minerais à scorodite	Fraction fine : Limon ± oxydés Phases arséniées et potentiellement arséniées : Oxy(hyrdoxy)des Argiles Fraction grossière : Quartzite Schistes Pélites Ferricrêtes
Chimie/granulochimie	Concentration (vs. zone d'étude) : Pauvre en Si, Al, K et Ni Moyennes en Mg, Cr, Mn, Fe, Cu, Zn et Ba Riche en S, As, Se, Sb, Pb et Bi 47% d'As dans RAM1bis riche en anhydride arsénieux	Concentration (vs. zone d'étude) : Pauvre en Ca et Ni Moyennes en As, Mg, Al, Si, K, Cr, Mn, Fe, Cu, Zn, As, Se, Sb, Sb, Ba, Pb et Bi Riche en S, et localement en As (20%)	Concentration (vs. zone d'étude) : Pauvre en S, Ca, Mn, Cu, As (<2 814 mg/kg), Se, Pb et Bi Moyennes en Mg, Al, Si, K, Cr, Fe, Ni, Zn, Sn, Sb et Ba	 Concentration (vs. zone d'étude) : Pauvre en S Moyennes en Mg, Al, Si, K, Cr, Mn, Fe, Ni, Zn, As, Se, Sn, Sb, Ba et Pb Riche en Ca, Mn, Bi et Cu des teneurs moyennes et variables en As ([As]_{min}=716 mg/kg ; [As]_{med}=7159 mg/kg ; [As]_{max}=1,7%) Fraction fine concentrée en As : [As] ≈ 11 000 mg/kg 22% issue fraction 200-2000 µm ([As]≈4 900 mg/kg) 26% issu fraction 63-200 µm ([As]≈21 000 mg/kg)
Origine	Résidus et minerais	Résidus, matériaux stériles et légèrement minéralisé	Sols légèrement impactés en As	Matériaux stériles et légèrement minéralisé concassé et déversés
Distribution des éléments	As distribué dans l'anhydride arsénieux principalement	n.d.	n.d.	As distribué dans des sels/sulfates solubles, les oxy/hydroxydes et les sulfate de fer de type jarosite
Transfert	As fortement mobilisable dans l'eau : Lixiviation 1/100 : 38% de l'As de la matrice solide extrait dans l'eau (207 000 mg/kg ou 2 070 mg/l) Lixiviation 1/10 : 1% de l'As de la matrice solide extrait dans l'eau (140 mg/kg ou 14 mg/l)	As peu mobilisables dans l'eau : Lixiviation 1/10 : 0,004% de l'As de la matrice solide extrait dans l'eau (0,14 mg/kg ou 14 μg/l)	As moyennement mobilisables dans l'eau : Lixiviation 1/100 : 0,065% de l'As de la matrice solide extrait dans l'eau (1,7 mg/kg ou 170 μg/l)	As et Fe mobilisables dans l'eau : • Lixiviation 1/100 : 3,2% de l'As de la matrice solide extrait dans l'eau (252 mg/kg ou 2,52 mg/l)

8.6 Verse annexe de Ramèle

8.6.1 *Géomorphologie*

La verse annexe de Ramèle s'étend sur une surface de 120 m² entre les cotes 317 m NGF et 309 m NGF (cf. Figure 76). Le versant en amont de la verse annexe de Ramèle est végétalisé. La pente moyenne du bassin versant de la verse annexe de Ramèle est de 27° soit 50%.

Figure 76 : Cartographie des pentes du bassin versant de la verse annexe de Ramèle

8.6.2 Dynamique des écoulements de surface

Le bassin versant et les écoulements de surface associés à la verse annexe de Ramèle sont présentés en Figure 77.

Figure 77 : Cartographie des écoulements de surface sur le bassin versant de la verse annexe de Ramèle

8.6.3 Caractérisation lithologique macroscopique

Les matériaux investigués de la verse annexe de Ramèle sont composés en moyenne de 72% de graves et blocs (58 à 76%) et 28% de matrice fine (< 2mm). Les blocs sont composés de schistes minéralisés, de quartzite et de schistes jaunes. La matrice fine globalement est grise à brune et correspond à des limons bruns à jaunes.

ID échantillon	Masse <2 mm (g)	Masse >2 mm (g)	Proportion massique de graves et blocs (%)	Description fraction fine	Description blocs
RAM11	679	2200	76	limon brun clair	minerais oxydé
RAM12	440	2100	83	limon brun	minerais
RAM13	485	2300	83	limon brun	quartzite, minerais
RAM14	973	2100	68	limon brun	minerais
RAM15	572	2300	80	limon brun/jaune	minerais oxydés, schiste jaune

Tableau 70. Caractéristiques physiques et lithologiques des échantillons du corps de la verse annexe de
Ramèle

Figure 78. Photographie d'échantillons représentatifs des matériaux de la verse annexe de Ramèle

8.6.4 Caractérisation chimique

Les résultats sont présentés dans le Tableau 71, le Tableau 72 et la Figure 79.

Dans la Figure 79, les médianes des concentrations en métaux des échantillons de chaque zone investiguée de la verse annexe de Ramèle sont normalisées à la concentration moyenne de l'ensemble du site d'étude, définie comme la moyenne des médianes de chaque zone d'intérêt. Cela permet d'illustrer des appauvrissements et des enrichissements relatifs par rapport à l'ensemble du site d'étude. De plus, des valeurs de bruits de fond réalisés sur le domaine géologique des nappes y sont ajoutées à des fins de comparaison. Les données provenant de deux méthodes analytiques différentes (matériaux investigués : pXRF ; bruit de fond : ICP), la comparaison n'est réalisée que sur les éléments dont les corrélations entre les deux méthodes ont été réalisées et sont bonnes.

Globalement, et comparativement aux matériaux investigués sur l'ensemble du site d'étude, les matériaux de la verse annexe de Ramèle sont hétérogènes et caractérisés par :

- de fortes teneurs en Ca, Cu, Zn, Se, Sb, Pb et Bi, et localement en S et As :
 - les teneurs en Ca varient de 341 mg/kg à 14,3% (min. en RAM15, max. en RAM11), avec une médiane de 4,2% ;
 - les teneurs en Cu varient de 242 mg/kg à 3 406 mg/kg (min. en RAM11, max. en RAM15), avec une médiane de 1 502 mg/kg ;
 - les teneurs en Zn varient de 4 mg/kg à 28 mg/kg (max. en RAM15) avec une médiane de 10 mg/kg ;
 - les teneurs en Se varient de 64 mg/kg à 702 mg/kg (min. en RAM11, max. en RAM15) avec une médiane de 221 mg/kg ;
 - les teneurs en Sb varient de 83 mg/kg à 175 mg/kg (min. en RAM15, max. en RAM11) avec une médiane de 221 mg/kg ;
 - les teneurs en Pb varient de 87 mg/kg à 171 mg/kg (min. en RAM15, 160 mg/kg en RAM11) avec une médiane de 112 mg/kg ;
 - les teneurs en Se varient de 77 mg/kg à 332 mg/kg (min. en RAM11, max. en RAM15) avec une médiane de 156 mg/kg ;
 - les teneurs en S varient de 0,2 mg/kg à 2,4 % (max. en RAM15) avec une médiane de 0,3 mg/kg ;
 - les teneurs en As varient de 0,5 mg/kg à 2,7 % (max. en RAM15) avec une médiane de 0,9 mg/kg ;
- des teneurs moyennes à fortes pour les autres éléments (Mg, Al, Si, K, Cr, Mn, Fe, Ni, Sn et Ba).

Comparativement au bruit de fond, les matériaux issus de la verse annexe de Ramèle sont :

- enrichis en S (localement), Ni, Cu, As, Pb (localement) et Bi ;
- proches ou dans la gamme de concentrations pour les éléments suivants : Ca, Fe, Zn et Pb.

Figure 79. Spectre multi élémentaire des concentrations normalisées à l'ensemble du site d'étude pour les matériaux de la verse annexe de Ramèle (la moyenne du site équivaut à la moyenne des médianes de l'ensemble des zones d'intérêt)

Les résultats laboratoire étant moins nombreux que les résultats au pXRF et systématiquement représentés par un équivalent au pXRF corrigé en fonction des analyses laboratoire, ils n'appellent pas d'autres commentaires. Toutefois, pour les éléments non mesurés au pXRF, les éléments suivants sont mis en évidence :

- au regard des concentrations en sulfates et des concentrations en S total, il est montré que le S contenu dans les sulfates solubles (SO4²⁻ seulement, n'inclus pas jarosite) représente 1% du S total, contre 99% dans les sulfures ;
- hormis pour le chrome, la quantité d'élément dissous par minéralisation régale représente plus de 80% de la quantité extraite par minéralisation totale ;
- les analyses de l'or ne montrent pas de teneurs détectées.

Tableau 71. Chimie des matériaux de la verse annexe de Ramèle (résultats pXRF corrigés en mg/kg)

ID échantillon	Zone d'intérêts	Mg	AI	Si	S	к	Ca	Cr	Mn	Fe	Co*	Ni	Cu	Zn	As	Se	Mo*	Ag*	Cd*	Sn	Sb	Ва	Hg*	Pb	Bi
RAM11	Verse annexe de Ramèle	71 120	46 507	65 578	7 167	6 333	143 609	54	2 258	61 817	122	72	3 406	702	4 927	6	6	18	23	26	175	335	12	160	77
RAM12	Verse annexe de Ramèle	40 426	73 464	126 492	3 056	15 043	40 194	125	962	89 158	136	56	1 073	221	8 951	13	4	23	16	51	138	660	12	112	156
RAM13	Verse annexe de Ramèle	38 421	74 461	134 580	2 092	15 432	58 313	81	1 424	81 927	134	71	1 502	269	7 020	4	4	17	18	24	71	574	12	94	111
RAM14	Verse annexe de Ramèle	42 247	67 357	125 805	2 214	13 219	41 836	65	1 046	103 871	144	37	2 191	219	14 394	10	4	38	14	52	103	651	14	171	227
RAM15	Verse annexe de Ramèle	36 862	56 260	108 805	24 229	19 464	364	69	502	136 030	346	19	242	64	27 478	28	8	19	28	57	83	824	32	87	332
Maximum	Verse annexe de Ramèle	71 120	74 461	134 580	24 229	19 464	143 609	125	2 258	136 030	346	72	3 406	702	27 478	28	8	38	28	57	175	824	32	171	332
Mediane	Verse annexe de Ramèle	40 426	67 357	125 805	3 056	15 043	41 836	69	1 046	89 158	136	56	1 502	221	8 951	10	4	19	18	51	103	651	12	112	156
Moyenne	Verse annexe de Ramèle	45 815	63 610	112 252	7 752	13 898	56 863	79	1 238	94 561	176	51	1 683	295	12 554	12	5	23	20	42	114	609	16	125	181
Minimum	Verse annexe de Ramèle	36 862	46 507	65 578	2 092	6 333	364	54	502	61 817	122	19	242	64	4 927	4	4	17	14	24	71	335	12	87	77
Mediane	Bâtiments de Nartau	16 477	69 970	125 270	1 546	15 937	21 843	88	664	61 055	127	34	143	98	6 648	6	5	43	17	28	52	606	13	85	20
Mediane	Paléosédiments	16 269	85 542	191 816	134	18 355	2 978	97	811	45 048	109	48	70	132	409	2	6	66	20	33	40	733	10	26	16
Mediane	Plateforme Marty	11 250	62 220	131 736	5 318	14 717	14 907	79	370	63 794	97	17	66	55	1 646	2	6	62	16	32	42	589	10	23	16
Mediane	Sédiments du Grésillou	18 182	101 168	251 067	92	22 362	2 736	115	688	46 929	55	50	64	125	478	1	3	33	11	26	20	800	5	19	8
Mediane	Verse de Nartau	57 456	47 048	98 806	9 162	17 362	138	107	273	95 690	124	10	55	26	26 573	16	4	78	12	43	65	843	14	18	73
Mediane	Verse Ramèle	15 980	69 117	156 150	900	18 731	3 988	96	381	48 954	101	32	179	83	1 919	2	4	34	16	40	49	738	10	45	31
Mediane	Zone de résidus de four	17 667	86 652	178 840	3 054	18 437	931	99	712	54 475	111	42	74	94	2 745	4	6	66	19	27	36	767	10	43	16
Moyenne des médiane de chaque zone d'intérêts	Site d'étude	24 213	73 634	157 436	2 908	17 618	11 170	94	618	63 138	107	36	269	104	6 171	5	5	50	16	35	51	716	10	46	42

*: 80% des concentrations mesurées sont des valeurs <LQ

Les concentrations inférieures à la LQ ont été mises à LQ/2 et les certaines données représentent une moyenne de trois mesures triplicat par échantillon

Analyses	Carbonates totaux	%S sulfate	s solubles ⁴	%S sulfures 4	Sulfates solubles	Mg	AI	S tot	Са	Cr	Fe
Unité	g/Kg	C	%	%	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
RAM15	<2,00	0,9	9%	99,1%	370	6 300	42 000	13 000	930	48	140 000
% extrait (régale vs. totale) ³	n.c.	n.	.C.	n.c.	n.c.	n.c.	81%	95%	n.c.	38%	88%
Analyses	Со	Ni Cu		Zn	As	Ag	Cd	Pb	Bi	Au (LQ)	Au (LD) ¹
Unité	mg/Kg	mg/Kg mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
RAM15	<16,0	<20	<20 240		24 000	2	<4,0	99	290	<20	<4,6
% extrait (régale vs. totale) ³ 78% 90% 89%		83%	82%	96%	88%	89%	88%	n.c.	n.c.		

Tableau 72. Chimie des matériaux de la verse annexe de Ramèle (résultats du laboratoire après minéralisation à l'eau régale)

n.c. : non calculable ou non concerné ; 1 : résultats entre la limite de détection et la limite de quantification ; 2 : issue de la minéralisation totale, plus efficace pour extraire l'or ; 3 : proportions moyennes de la quantité d'élément extrait entre la minéralisation à l'eau régale et la minéralisation totale ; 4 : les proportions de S contenu dans les sulfates et les sulfures sont calculées sur la base des concentrations en sulfates déterminées par le laboratoire, selon les hypothèses suivantes : les sulfates sont représentés par le composé SO42- et tout le S non contenu dans les sulfates solubles est contenu dans les sulfures. Les sulfates de fer type jaoriste n'étant pas inclus dans les sulfates solubles, le % de sulfures peut être majoré.